928 resultados para Non-structural Protein Ns2a And Ns3
Resumo:
Introduction, objective: To present a case report in which the finding of non-coeliac gluten sensitivity was decisive for the treatment of a complex autoimmune disease. Materials and methods: A 43-year-old woman with polyarthritis, psoriatic features, anti-SSA/Ro and anti-cyclic citrullinated peptide antibodies, with refractory course, was evaluated for gluten sensitivity despite negative serology for coeliac disease. Results: The patient carried the HLA DQ2 haplotype and duodenal biopsy showed lymphocytic enteritis. A gluten-free diet resolved the clinical picture and permitted tapering of immunosuppressive therapy. Conclusion: Non-coeliac gluten sensitivity can be associated with autoimmunity despite the absence of the specific autoantibodies of coeliac disease.
Resumo:
Arabinogalactan proteins (AGPs) are cell wall proteoglycans that have been shown to be important for pollen development. An Arabidopsis double null mutant for two pollen-specific AGPs (agp6 agp11) showed reduced pollen tube growth and compromised response to germination cues in vivo. A microarray experiment was performed on agp6 agp11 pollen tubes to search for genetic interactions in the context of pollen tube growth. A yeast two-hybrid experiment for AGP6 and AGP11 was also designed.
Resumo:
A series of 3 experiments were conducted to evaluate the use of microalgae as supplements for ruminants consuming low-CP tropical grasses. In Exp. 1, the chemical composition and in vitro protein degradability of 9 algae species and 4 protein supplements were determined. In Exp. 2, rumen function and microbial protein (MCP) production were determined in Bos indicus steers fed speargrass hay alone or supplemented with Spirulina platensis, Chlorella pyrenoidosa, Dunaliella salina, or cottonseed meal (CSM). In Exp. 3, DMI and ADG were determined in B. indicus steers fed speargrass hay alone or supplemented with increasing amounts of NPN (urea combined with ammonia sulfate), CSM, or S. platensis. In Exp. 1, the CP content of S. platensis and C. pyrenoidosa (675 and 580 g/kg DM) was highest among the algae species and higher than the other protein supplements evaluated, and Schizochytrium sp. had the highest crude lipid (CL) content (198 g/kg DM). In Exp. 2, S. platensis supplementation increased speargrass hay intake, the efficiency of MCP production, the fractional outflow rate of digesta from the rumen, the concentration of NH3N, and the molar proportion of branched-chain fatty acids in the rumen fluid of steers above all other treatments. Dunaliella salina acceptance by steers was low and this resulted in no significant difference to unsupplemented steers for all parameters measured for this algae supplement. In Exp. 3, ADG linearly increased with increasing supplementary N intake from both S. platensis and NPN, with no difference between the 2 supplements. In contrast, ADG quadratically increased with increasing supplementary N intake from CSM. It was concluded that S. platensis and C. pyrenoidosa may potentially be used as protein sources for cattle grazing low-CP pastures.
Resumo:
International audience
Resumo:
The effect of dietary crude protein (CP) and additives on odour flux from broiler litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replications of 12 birds each. A 5×3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). Low CP (LCP) and high CP (HCP) diets differed in CP levels by 4.5-5%. The low CP diets were supplemented with L-valine, L-isoleucine, L-arginine, L-lysine, D,L-methionine and L-threonine. The antibiotic used was Zn Bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were measured from litter headspace using a flux hood and selective ion flow tube mass spectrometry (SIFT-MS). Results were log tranformed and analysed by two-way ANOVA with repeated measures using JMP statistical software v.8, and means were separated by Tukey's HSD test at P<0.05.The results showed that LCP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3 and phenol in litter compared to HCP group (P<0.05). Similarly, HCP+probiotic group produced lower flux of H2S (P<0.05) and HCP+saponin group produced lower flux of trimethylamine and phenol in litter compared to HCP group (P<0.05). The dietary treatments tended (P=0.065) to have higher flux of methanethiol in HCP group compared to others. There was a diet x age interaction for litter flux of diacetyl, acetoin, 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid and hexane (P<0.05). Concentrations of diacetyl, acetoin, propionic acid and hexane in litter were higher from LCP group compared to all other treatments on d 35 (P<0.05) but not on days 15 and 29. Thus, the low CP diet, Bacillus subtilis based probiotic and Yucca/Quillaja based saponin were effective in reducing the emissions of some key odorants from broiler litter.
Resumo:
Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.
Resumo:
The effect of dietary crude protein (CP) and additives on odor flux from meat chicken litter was investigated using 180 day-old Ross 308 male chicks randomly allocated to five dietary treatments with three replicates of 12 birds each. A 5 × 3 factorial arrangement of treatments was employed. Factors were: diet (low CP, high CP, high CP+antibiotic, high CP+probiotic, high CP+saponin) and age (15, 29, 35 days). The antibiotic used was Zn bacitracin, the probiotic was a blend of three Bacillus subtilis strains and the saponin came from a blend of Yucca and Quillaja. Odorants were collected from litter headspace with a flux hood and measured using selective ion flow tube mass spectrometry (SIFT-MS). Litter moisture, water activity (Aw), and litter headspace odorant concentrations were correlated. The results showed that low CP group produced lower flux of dimethyl amine, trimethyl amine, H2S, NH3, and phenol in litter compared to high CP group (P < 0.05). Similarly, high CP+probiotic group produced lower flux of H2S (P < 0.05) and high CP+saponin group produced lower flux of trimethylamine and phenol in litter compared to high CP group (P < 0.05). The dietary treatments tended (P = 0.065) to have higher flux of methanethiol in high CP group compared to others. There was a diet × age interaction for litter flux of diacetyl, 3-hydroxy-2-butanone (acetoin), 3-methyl-1-butanol, 3-methylbutanal, ethanethiol, propionic acid, and hexane (P < 0.05). Concentrations of diacetyl, acetoin, propionic acid, and hexane in litter were higher from low CP group compared to all other treatments on d 35 (P < 0.05) but not on d 15 and 29. A high litter moisture increased water activity (P < 0.01) and favored the emissions of methyl mercaptan, hydrogen sulfide, dimethyl sulfide, ammonia, trimethyl amine, phenol, indole, and 3-methylindole over others. Thus, the low CP diet, Bacillus subtilis based probiotic and the blend of Yucca/Quillaja saponin were effective in reducing the emissions of some key odorants from meat chicken litter.
Resumo:
The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.
Resumo:
International audience
Resumo:
The interaction of bovine serum albumin (BSA) with the ionic surfactants sodium dodecylsulfate (SDS, anionic), cetyltrimethylammonium chloride (CTAC, cationic) and N-hexadecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (HPS, zwitterionic) was studied by electron paramagnetic resonance (EPR) spectroscopy of spin label covalently bound to the single free thiol group of the protein. EPR spectra simulation allows to monitor the protein dynamics at the labeling site and to estimate the changes in standard Gibbs free energy, enthalpy and entropy for transferring the nitroxide side chain from the more motionally restricted to the less restricted component. Whereas SDS and CTAC showed similar increases in the dynamics of the protein backbone for all measured concentrations. HPS presented a smaller effect at concentrations above 1.5 mM. At 10 mM of surfactants and 0.15 mM BSA, the standard Gibbs free energy change was consistent with protein backbone conformations more expanded and exposed to the solvent as compared to the native protein, but with a less pronounced effect for HPS. In the presence of the surfactants, the enthalpy change, related to the energy required to dissociate the nitroxide side chain from the protein, was greater, suggesting a lower water activity. The nitroxide side chain also detected a higher viscosity environment in the vicinity of the paramagnetic probe induced by the addition of the surfactants. The results suggest that the surfactant-BSA interaction, at higher surfactant concentration, is affected by the affinities of the surfactant to its own micelles and micelle-like aggregates. Complementary DLS data suggests that the temperature induced changes monitored by the nitroxide probe reflects local changes in the vicinity of the single thiol group of Cys-34 BSA residue. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
International audience
Resumo:
Obesity and Type 2 diabetes mellitus share a strong pro-inflammatory profile. It has been observed that iron is a risk factor in the development of type 2 diabetes. The aim of this study was to evaluate the relationship between iron nutritional status and inflammation with the risk of type 2 diabetes development in obese subjects. We studied 30 obese men with type 2 diabetes (OBDM); 30 obese subjects without diabetes (OB) and 30 healthy subjects (Cn). We isolated peripheral mononuclear cells (PMCs) and challenged them with high Fe concentrations. Total mRNA was isolated and relative abundance of TNF-αIL-6 and hepcidin were determined by qPCR. Iron status, biochemical, inflammatory and oxidative stress parameters were also characterized. OBDM and OB patients showed increased hsCRP levels compared to the Cn group. OBDM subjects showed higher levels of ferritin than the Cn group. TNF-α and IL-6 mRNA relative abundances were increased in OBDM PMCs treated with high/Fe. Hepcidin mRNA was increased with basal and high iron concentration. We found that the highest quartile of ferritin was associated with an increased risk of type 2 diabetes when it was adjusted to BMI and HOMA-IR; this association was independent of the inflammatory status. The highest level of hepcidin gene expression also showed a trend of increased risk of diabetes, however it was not significant. Levels of hsCRP over 2 mg/L showed a significant trend of increasing the risk of diabetes. In conclusion, iron may stimulate the expression of pro-inflammatory genes (TNF-α and IL-6), and both hepcidin and ferritin gene expression levels could be a risk factor for the development of type 2 diabetes. Subjects that have an increased cardiovascular risk also have a major risk to develop type 2 diabetes, which is independent of the BMI and insulin resistance state.
Resumo:
Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.