930 resultados para Non-muscle myosin II
Resumo:
ABSTRACT: BACKGROUND: Perfusion-cardiovascular magnetic resonance (CMR) is generally accepted as an alternative to SPECT to assess myocardial ischemia non-invasively. However its performance vs gated-SPECT and in sub-populations is not fully established. The goal was to compare in a multicenter setting the diagnostic performance of perfusion-CMR and gated-SPECT for the detection of CAD in various populations using conventional x-ray coronary angiography (CXA) as the standard of reference. METHODS: In 33 centers (in US and Europe) 533 patients, eligible for CXA or SPECT, were enrolled in this multivendor trial. SPECT and CXA were performed within 4 weeks before or after CMR in all patients. Prevalence of CAD in the sample was 49% and 515 patients received MR contrast medium. Drop-out rates for CMR and SPECT were 5.6% and 3.7%, respectively (ns). The study was powered for the primary endpoint of non-inferiority of CMR vs SPECT for both, sensitivity and specificity for the detection of CAD (using a single-threshold reading), the results for the primary endpoint were reported elsewhere. In this article secondary endpoints are presented, i.e. the diagnostic performance of CMR versus SPECT in subpopulations such as multi-vessel disease (MVD), in men, in women, and in patients without prior myocardial infarction (MI). For diagnostic performance assessment the area under the receiver-operator-characteristics-curve (AUC) was calculated. Readers were blinded versus clinical data, CXA, and imaging results. RESULTS: The diagnostic performance (= area under ROC = AUC) of CMR was superior to SPECT (p = 0.0004, n = 425) and to gated-SPECT (p = 0.018, n = 253). CMR performed better than SPECT in MVD (p = 0.003 vs all SPECT, p = 0.04 vs gated-SPECT), in men (p = 0.004, n = 313) and in women (p = 0.03, n = 112) as well as in the non-infarct patients (p = 0.005, n = 186 in 1-3 vessel disease and p = 0.015, n = 140 in MVD). CONCLUSION: In this large multicenter, multivendor study the diagnostic performance of perfusion-CMR to detect CAD was superior to perfusion SPECT in the entire population and in sub-groups. Perfusion-CMR can be recommended as an alternative for SPECT imaging. TRIAL REGISTRATION: ClinicalTrials.gov, Identifier: NCT00977093.
Resumo:
BACKGROUND: Second line endocrine therapy has limited antitumour activity. Fulvestrant inhibits and downregulates the oestrogen receptor. The mitogen-activated protein kinase (MAPK) pathway is one of the major cascades involved in resistance to endocrine therapy. We assessed the efficacy and safety of fulvestrant with selumetinib, a MEK 1/2 inhibitor, in advanced stage breast cancer progressing after aromatase inhibitor (AI). PATIENTS AND METHODS: This randomised phase II trial included postmenopausal patients with endocrine-sensitive breast cancer. They were ramdomised to fulvestrant combined with selumetinib or placebo. The primary endpoint was disease control rate (DCR) in the experimental arm. ClinicalTrials.gov Indentifier: NCT01160718. RESULTS: Following the planned interim efficacy analysis, recruitment was interrupted after the inclusion of 46 patients (23 in each arm), because the selumetinib-fulvestrant arm did not reach the pre-specified DCR. DCR was 23% (95% confidence interval (CI) 8-45%) in the selumetinib arm and 50% (95% CI 27-75%) in the placebo arm. Median progression-free survival was 3.7months (95% CI 1.9-5.8) in the selumetinib arm and 5.6months (95% CI 3.4-13.6) in the placebo arm. Median time to treatment failure was 5.1 (95% CI 2.3-6.7) and 5.6 (95% CI 3.4-10.2) months, respectively. The most frequent treatment-related adverse events observed in the selumetinib-fulvestrant arm were skin disorders, fatigue, nausea/vomiting, oedema, diarrhoea, mouth disorders and muscle disorders. CONCLUSIONS: The addition of selumetinib to fulvestrant did not show improving patients' outcome and was poorly tolerated at the recommended monotherapy dose. Selumetinib may have deteriorated the efficacy of the endocrine therapy in some patients.
Resumo:
Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and L-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, L-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K-Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and L-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K-Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture.
Resumo:
OBJECTIVE: Skeletal Muscle Biopsy is a minor surgical procedure for the diagnosis of different neuromuscular pathological conditions and has recently gained popularity also in the research field of age-related muscular modifications and sarcopenia. Few studies focused on the application of mini-invasive muscular biopsy in both normal and pathological conditions. The aim of our study was to describe a mini invasive ultrasound-guided skeletal muscular biopsy technique in complete spinal cord injured (SCI) patients and healthy controls with a tri-axial end-cut needle. PATIENTS AND METHODS: Skeletal muscle biopsies were collected from 6 chronic SCI patients and 3 healthy controls vastus lateralis muscle with a tri-axial end cut needle (Biopince© - Angiotech). Muscle samples were stained for ATPase to determine fibers composition, moreover, gene expression of cyclooxygenase-1 (COX-1) and prostaglandin E2 receptor has been analyzed by Real Time RT-PCR. RESULTS: All the procedures were perfomed easily without failures and complications. Control tissue was macroscopically thicker than SCI one. Control specimen displayed an equal distribution of type I and type II fibers, while SCI sample displayed a prevalence of type II fibers SCI specimen displayed a significant reduction in COX-1 gene expression. This mini-invasive approach was easy, accurate and with low complication rate in performing skeletal muscle biopsy in both SCI patients and controls. CONCLUSIONS: This technique could be useful in conditions in which the overall quantity of specimen required is small like for molecular biology analysis. For histological diagnostic purposes and/or conditions in which the original tissue is already pathologically modified, this technique should be integrated with more invasive techniques.
Resumo:
Weight regain after caloric restriction results in accelerated fat storage in adipose tissue. This catch-up fat phenomenon is postulated to result partly from suppressed skeletal muscle thermogenesis, but the underlying mechanisms are elusive. We investigated whether the reduced rate of skeletal muscle contraction-relaxation cycle that occurs after caloric restriction persists during weight recovery and could contribute to catch-up fat. Using a rat model of semistarvation-refeeding, in which fat recovery is driven by suppressed thermogenesis, we show that contraction and relaxation of leg muscles are slower after both semistarvation and refeeding. These effects are associated with (i) higher expression of muscle deiodinase type 3 (DIO3), which inactivates tri-iodothyronine (T3), and lower expression of T3-activating enzyme, deiodinase type 2 (DIO2), (ii) slower net formation of T3 from its T4 precursor in muscles, and (iii) accumulation of slow fibers at the expense of fast fibers. These semistarvation-induced changes persisted during recovery and correlated with impaired expression of transcription factors involved in slow-twitch muscle development. We conclude that diminished muscle thermogenesis following caloric restriction results from reduced muscle T3 levels, alteration in muscle-specific transcription factors, and fast-to-slow fiber shift causing slower contractility. These energy-sparing effects persist during weight recovery and contribute to catch-up fat.
Resumo:
Les ß2-agonistes sont des bronchodilatateurs qui sont prescrits pour traiter l'asthme et l'asthme induite par l'exercice (AIE). Il est relevant de comprendre s'il y a une utilisation adéquate de ces médicaments pour traiter l'AIE chez les athlètes de haut niveau, ou s'ils sont utilisés pour leur potentiel effet ergogénique sur la performance physique. Ce travail examine les actions centrales et périphériques sur la fonction contractile du muscle squelettique humain in vivo induits par l'ingestion d'une dose thérapeutique de ß2- agonistes. Le premier but était d'évaluer si les ß2-agonistes exerçaient une potentialisation de la contractilité du muscle humain et/ou un effet "anti¬fatigue" comme observé dans le modèle animal. Les résultats n'ont fournit aucune évidence d'une potentialisation sur le muscle squelettique humain in vivo non-fatigué et fatigué induit par l'administration orale de ß2-agonistes. Tout effet excitateur exercé par ce traitement sur le système nerveux central a été aussi exclu. Le deuxième but était de déterminer si les ß2-agonistes affaiblissaient la contractilité du muscle squelettique humain à contraction lente, et d'évaluer si ce changement pouvait interférer avec le contrôle moteur au muscle. Les résultats ont montré que les ß2-agonistes affaiblissent la contractilité des fibres lentes, comme conséquence de l'effet lusitrope positif se produisant dans ces fibres. La capacité de développer une force maximale n'est pas réduite par le traitement, même si une augmentation de la commande centrale au muscle est requise pour produire la même force lors de contractions sous-maximales. Le but final était d'examiner si une adaptation du contrôle moteur était re¬quis pour compenser l'affaiblissement des fibres lentes exercée par les ß2- agonistes pendant un exercice volontaire, et de déterminer si cette adaptation centrale pouvait accroître la fatigue musculaire. Malgré le fait que les résultats confirment l'effet affaiblissant induit par les ß2-agonistes, ce changement contractile n'influence pas le contrôle moteur au muscle pendant les contractions sous-maximales de l'exercice fatiguant, et n'accroît pas le degré de fatigue. Ce travail éclaircit les actions spécifiques des ß2-agonistes sur la fonction contractile du muscle squelettique humain in vivo et leurs influence sur le contrôle moteur. Les mécanismes sous-jacents de l'action ergogénique sur la performance physique produit par les ß2-agonistes sont aussi élucidés. -- ß2-Agonists are bronchodilators that are widely prescribed for the treatment of asthma and exercise-induced asthma (EIA). The extensive use of ß2-agonists by competitive athletes has raised the question as to whether there is a valid need for this class of drugs because of EIA or a misuse because of their potential ergogenic effect on exercise performance. This work investigated the central and peripheral actions that were elicited by the ingestion of a therapeutic dose of ß2-agonists on the contractility of human skeletal muscle in vivo. The first objective was to investigate whether ß2-agonists would potentiate muscle contractility and/or exert the "anti-fatigue" effect observed in animal models. The findings did not provide any evidence for the ß2-agonist-induced potentiation of in vivo human non-fatigued and fatigued skeletal muscle. Moreover, the findings exclude any excitatory action of this treatment on the central nervous system. The second objective was to explore whether the weakening action on the contractile function would occur after ß2-agonist intake in human slow-twitch skeletal muscle and to ascertain whether this contractile change may interfere with muscle motor control. The results showed that ß2-agonists weaken the contractility of slow-twitch muscle fibres as a result of the lusitropic effect occurring in these fibres. The maximal force-generating capacity of the skeletal muscle is not reduced by ß2-agonists, even though an augmented neural drive to muscle is required to develop the same force during submaximal contractions. The final objective was to examine whether a motor control adjustment is needed to compensate for the ß2-agonist-induced weakening effect on slow- twitch fibres during a voluntary exercise and to also assess whether this central adaptation could exaggerate muscle fatigue. Despite the findings confirming the occurrence of the weakening action that is exerted by ß2- agonists, this contractile change did not interfere with muscle motor control during the submaximal contractions of the fatiguing exercise and did not augment the degree of the muscle fatigue. This work contributes to a better understanding of the specific actions of ß2-agonists on the contractile function of in vivo human skeletal muscles and their influence on motor control. In addition, the findings elucidate mechanisms that could underlie the ergogenic effect that is exerted by ß2- agonists on physical performance.
Resumo:
OBJECTIVE: To compare the effects of two different 2-week-long training modalities [continuous at the intensity eliciting the maximal fat oxidation (Fatmax ) versus high-intensity interval training (HIIT)] in men with class II and III obesity. METHODS: Nineteen men with obesity (BMI ≥ 35 kg(.) m(-2) ) were assigned to Fatmax group (GFatmax ) or to HIIT group (GHIIT ). Both groups performed eight cycling sessions matched for mechanical work. Aerobic fitness and fat oxidation rates (FORs) during exercise were assessed prior and following the training. Blood samples were drawn to determine hormones and plasma metabolites levels. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA2-IR). RESULTS: Aerobic fitness and FORs during exercise were significantly increased in both groups after training (P ≤ 0.001). HOMA2-IR was significantly reduced only for GFatmax (P ≤ 0.001). Resting non-esterified fatty acids (NEFA) and insulin decreased significantly only in GFatmax (P ≤ 0.002). CONCLUSIONS: Two weeks of HIIT and Fatmax training are effective for the improvement of aerobic fitness and FORs during exercise in these classes of obesity. The decreased levels of resting NEFA only in GFatmax may be involved in the decreased insulin resistance only in this group.
β-Adrenergic modulation of skeletal muscle contraction: key role of excitation-contraction coupling.
Resumo:
Our aim is to describe the acute effects of catecholamines/β-adrenergic agonists on contraction of non-fatigued skeletal muscle in animals and humans, and explain the mechanisms involved. Adrenaline/β-agonists (0.1-30 μm) generally augment peak force across animal species (positive inotropic effect) and abbreviate relaxation of slow-twitch muscles (positive lusitropic effect). A peak force reduction also occurs in slow-twitch muscles in some conditions. β2 -Adrenoceptor stimulation activates distinct cyclic AMP-dependent protein kinases to phosphorylate multiple target proteins. β-Agonists modulate sarcolemmal processes (increased resting membrane potential and action potential amplitude) via enhanced Na(+) -K(+) pump and Na(+) -K(+) -2Cl(-) cotransporter function, but this does not increase force. Myofibrillar Ca(2+) sensitivity and maximum Ca(2+) -activated force are unchanged. All force potentiation involves amplified myoplasmic Ca(2+) transients consequent to increased Ca(2+) release from sarcoplasmic reticulum (SR). This unequivocally requires phosphorylation of SR Ca(2+) release channels/ryanodine receptors (RyR1) which sensitize the Ca(2+) -induced Ca(2+) release mechanism. Enhanced trans-sarcolemmal Ca(2+) influx through phosphorylated voltage-activated Ca(2+) channels contributes to force potentiation in diaphragm and amphibian muscle, but not mammalian limb muscle. Phosphorylation of phospholamban increases SR Ca(2+) pump activity in slow-twitch fibres but does not augment force; this process accelerates relaxation and may depress force. Greater Ca(2+) loading of SR may assist force potentiation in fast-twitch muscle. Some human studies show no significant force potentiation which appears to be related to the β-agonist concentration used. Indeed high-dose β-agonists (∼0.1 μm) enhance SR Ca(2+) -release rates, maximum voluntary contraction strength and peak Wingate power in trained humans. The combined findings can explain how adrenaline/β-agonists influence muscle performance during exercise/stress in humans.
Resumo:
Muscular function of the neck region may be of importance for the etiology of headache, especially of tension-type headache. However, very few data exist on the association of neck muscle function with different types of headache in adolescents. The main aim of the study was to examine the association of neck muscle function with adolescent headache. The associations between leisure time activities, endurance strength of the upper extremities (UE endurance) and mobility of the neck-shoulder region and adolescent headache were studied. In addition, the associations of force production, EMG/force ratio, co-activation and fatigue characteristics, and cross-sectional area (CSA) of neck muscles with adolescent headache were studied. The study is part of a population-based cohort study of 12-year-old children with and without headache. The study had five phases (years 1998-2003). At the age of 13 years, a sample of 183 adolescents (183/311) participated in endurance strength and mobility measurements of the neck-shoulder region. In addition, the type and level of physical and other leisure activity were elicited with open and structured questions. At the age of 17 years, a random sample of 89 adolescents (89/202) participated in force and EMG measurements of the neck-shoulder muscles. In addition, at the age of 17 years, a sample of 65 adolescents (65/89) participated in CSA measurements of the neck muscles. At the age of 13 years, intensive participation in overall sports activity was associated with migraine. Frequent computer use was associated both with migraine and tension-type headache. The type of sports or other leisure activity classified them on the basis of body loading was not associated with headache type. In girls, low UE endurance of both sides, and low cervical rotation of the dominant side, were associated with tension-type headache, and low UE endurance of non-dominant side with migraine. In boys, no associations occurred between UE endurance and mobility variables and headache types. At the age of 17 years, in girls, high EMG/force ratios between the EMG of the left agonist sternocleidomastoid muscle (SCM) and maximal neck flexion and neck rotation force to the right side as well as high co-activation of right antagonist cervical erector spinae (CES) muscles during maximal neck flexion force were associated with migraine-type headache. In girls, neck force production was not associated with headache types but low left shoulder flexion force was associated with tension-type headache. In boys, no associations were found between EMG and force variables and headache. Increased SCM muscles fatigue of both sides was associated with tension-type headache. In boys, the small CSA of the right SCM muscle and, in girls, of combined right SCM and scalenus muscles was associated with tension-type headache. Similarly, in boys, the large CSA of the right SCM muscle, of the combined right SCM and scalenus muscles, of the left semispinalis capitis muscle, of the combined left semispinalis and splenius muscles was associated with migraine. No other differences in the CSA of neck flexion or extension muscles were found. Differences in the neuromucular function of the neck-shoulder muscles were associated with adolescent headache, especially in girls. Differences in the cross-sectional area of unilateral neck muscles were associated with headache, especially in boys. Differences in the neuromuscular function and in the cross-sectional area of the neck muscles also occurred between different types of headache. It remains to be established whether the findings are primary or secondary to adolescent migraine and tension headache. Keywords: adolescent, cross-sectional area, electromyography, endurance strength, fatigue, force, headache, leisure time activity, migraine, mobility, neck muscles, tension-type headache
Resumo:
In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.
Resumo:
Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise. J. Cell. Physiol. 231: 708-718, 2016. © 2015 Wiley Periodicals, Inc.
Resumo:
Aim: Bevacizumab is a monoclonal antibody directed against the vascular endothelial growth factor (VEGF). The previous phase II trial ABIGAIL (Reck, 2010) suggested circulating VEGF as a prognostic, but not predictive, biomarker for patients (pts) with non-small cell lung cancer (NSCLC) treated with bevacizumab. We prospectively measured VEGF in the multicenter phase II trial SAKK19/09 (NCT01116219). Methods: SAKK19/09 enrolled 77 evaluable patients (pts) with previously untreated, advanced nonsquamous NSCLC and EGFR wild type. Pts received 4 cycles of cisplatin 75mg/m2 (or carboplatin AUC5), pemetrexed 500mg/m2 and bevacizumab 7.5mg/kg, followed by maintenance therapy with pemetrexed and bevacizumab until progression by RECIST1.1. Follow-up CT scans were performed every 6 weeks until week 54 and every 12 weeks thereafter. Baseline EDTA blood samples were sent by same-day courier to the central laboratory for centrifugation, aliquoting, and freezing. Upon completion of enrollment, aliquots were thawed, and VEGF quantification was performed centrally using Luminex® Performance Assay Human Base Kit A (R&D Systems, Abingdon, UK). The mean value was used to stratify pts into two groups (low versus high VEGF). Best response rate assessed by RECIST1.1 (CR + PR versus SD + PD). Results: Clinical results of the SAKK19/09 trial were reported previously (Gautschi, 2013). Baseline plasma VEGF was detectable in 71 of 77 (92%) evaluable patients treated with chemotherapy and bevacizumab. The mean value was 74.9 pg/ml, the median 47.5 pg/ml, and the range 3.55 to 310 pg/ml. Using the mean as a predefined cutoff value, 50 patients had low VEGF levels and 21 patients had high VEGF levels. High VEGF was significantly associated with shorter PFS (4.1 vs 8.3 months, HR = 2.56; 95%CI: 1.43- 4.57; p = 0.0015) and OS (8.7 vs 17.5 months, HR = 2.67; 95% CI: 1.37-5.20; p = 0.0041), but not with best response rate ( p = 0.2256). Conclusions: Consistent with the ABIGAIL trial, circulating VEGF was prognostic, but not predictive for response, in the current trial. Further work is ongoing to identify potentially predictive biomarkers for bevacizumab, using comprehensive proteomic analyses. Disclosure: S.I. Rothschild: I received honoraria for the participation in advisory boards from Eli Lilly and Roche and for presentations at scientific symposiums sponsored by Roche; O. Gautschi: Honoraria for advisory boards of Eli Lilly and Roche; R. Cathomas: Advisory board member: Eli Lilly. All other authors have declared no conflicts of interest.
Resumo:
Aim: We have previously documented the feasibility of neoadjuvant chemotherapy and EPP in a multicenter trial of MPM (Weder, Ann Oncol 18: 1196, 2007). The objectives of the trimodality trial SAKK17/04 (NCT00334594) were to evaluate the time to loco-regional relapse with or without high dose hemithoracic radiotherapy in a prospective multicenter randomized phase II trial in patients with R0 and R1 resection after neoadjuvant chemotherapy and EPP. Methods: Eligible patients had pathologically confirmed MPM, surgically resectable TNM stage (T1-3 N0-2 M0), PS0-1, ages 18-70 years. Part 1 had a phase II design, and included neoadjuvant chemotherapy with 3 cycles of cisplatin and pemetrexed, followed by restaging and EPP. The primary endpoint of part 1 was complete macroscopic resection (R0-1). Part 2 randomized consenting patients with R0-1 resection into two parallel phase II arms (control arm A and radiotherapy arm B). The primary endpoint for part 2 was loco-regional relapse-free survival (RFS). To detect a 1 year increase with 80% power and 10% alpha, 37 patients were needed for arm B. Secondary endpoints included operability, tolerability of chemotherapy and radiotherapy, survival, and translational research Results: Because accrual of part 2 was slower than planned, the trial was stopped in 2013. Overall, 153 patients entered the trial, of whom 125 underwent surgery and 99 had a complete macroscopic resection (primary endpoint part 1). Of the later patients, 54 could be randomized 1:1 into each arm. Reasons for non-randomization included patient refusal in 24 and ineligibility or protocol deviations in 21. Of the 27 patients randomized to hemithoracic radiotherapy, 25 completed the treatment as planned. For part 1 the median RFS was 8.8 (95%CI: 7.3-10.7) and median OS was 15.0 (95% CI: 12.1-19.3) months. For part 2 the median local RFS for group A was 7.6 (95%CI: 5.5-10.7) and for group B 9.4 (95%CI: 6.5-11.9) months (primary endpoint part 2), while the overall RFS and OS for group A were 5.7 (95%CI: 3.5-8.8) and 16.9 (95%CI: 10.7-23.6) months and for group B 7.6 (95% CI:5.2-10.6) and 14.9 (95%CI: 7.0-17.6) months. Conclusions: This study did not reach the primary endpoint which was defined as one-year increase in loco-regional relapse-free survival and thus does not support the routine use of hemithoracic RT after neoadjuvant chemotherapy and EPP. Disclosure: All authors have declared no conflicts of interest.
Resumo:
AMPK, a master metabolic switch, mediates the observed increase of glucose uptake in locomotory muscle of mammals during exercise. AMPK is activated by changes in the intracellular AMP:ATP ratio when ATP consumption is stimulated by contractile activity but also by AICAR and metformin, compounds that increase glucose transport in mammalian muscle cells. However, the possible role of AMPK in the regulation of glucose metabolism in skeletal muscle has not been investigated in other vertebrates, including fish. In this study, we investigated the effects of AMPK activators on glucose uptake, AMPK activity, cell surface levels of trout GLUT4 and expression of GLUT1 and GLUT4 as well as the expression of enzymes regulating glucose disposal and PGC1α in trout myotubes derived from a primary muscle cell culture. We show that AICAR and metformin significantly stimulated glucose uptake (1.6 and 1.3 fold, respectively) and that Compound C completely abrogated the stimulatory effects of the AMPK activators on glucose uptake. The combination of insulin and AMPK activators did not result in additive nor synergistic effects on glucose uptake. Moreover, exposure of trout myotubes to AICAR and metformin resulted in an increase in AMPK activity (3.8 and 3 fold, respectively). We also provide evidence suggesting that stimulation of glucose uptake by AMPK activators in trout myotubes may take place, at least in part, by increasing the cell surface and mRNA levels of trout GLUT4. Finally, AICAR increased the mRNA levels of genes involved in glucose disposal (hexokinase, 6-phosphofructokinase, pyruvate kinase and citrate synthase) and mitochondrial biogenesis (PGC-1α) and did not affect glycogen content or glycogen synthase mRNA levels in trout myotubes. Therefore, we provide evidence, for the first time in non-mammalian vertebrates, suggesting a potentially important role of AMPK in stimulating glucose uptake and utilization in the skeletal muscle of fish.
Resumo:
PURPOSE: The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. METHODS: Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. RESULTS: V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. CONCLUSIONS: Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency.