914 resultados para Nitrogen fertilization and yield components
Resumo:
Yield loss in crops is often associated with plant disease or external factors such as environment, water supply and nutrient availability. Improper agricultural practices can also introduce risks into the equation. Herbicide drift can be a combination of improper practices and environmental conditions which can create a potential yield loss. As traditional assessment of plant damage is often imprecise and time consuming, the ability of remote and proximal sensing techniques to monitor various bio-chemical alterations in the plant may offer a faster, non-destructive and reliable approach to predict yield loss caused by herbicide drift. This paper examines the prediction capabilities of partial least squares regression (PLS-R) models for estimating yield. Models were constructed with hyperspectral data of a cotton crop sprayed with three simulated doses of the phenoxy herbicide 2,4-D at three different growth stages. Fibre quality, photosynthesis, conductance, and two main hormones, indole acetic acid (IAA) and abscisic acid (ABA) were also analysed. Except for fibre quality and ABA, Spearman correlations have shown that these variables were highly affected by the chemical. Four PLS-R models for predicting yield were developed according to four timings of data collection: 2, 7, 14 and 28 days after the exposure (DAE). As indicated by the model performance, the analysis revealed that 7 DAE was the best time for data collection purposes (RMSEP = 2.6 and R2 = 0.88), followed by 28 DAE (RMSEP = 3.2 and R2 = 0.84). In summary, the results of this study show that it is possible to accurately predict yield after a simulated herbicide drift of 2,4-D on a cotton crop, through the analysis of hyperspectral data, thereby providing a reliable, effective and non-destructive alternative based on the internal response of the cotton leaves.
Resumo:
Research on mushroom production and products is gaining more grounds globally and in particular Nigeria. This study was carried out to determine nutritional relationship between the substrate used for cultivation and the fruiting body on each of the substrates. Agro-wastes, namely: palm ( Elaeis guineensis ) fruit shaft, plantain ( Musa paradisiaca ) leaves, sawdust and kenaf ( Hibiscus cannabinus ) stem, were assessed for suitability as substrates for cultivation of oyster mushroom ( Pleurotus floridanus Singer ). The spawn of the mushroom was used to inoculate each of the substrates, using a complete randomised design, with five replicates for each substrate. Results showed that all the substrates supported mycelia growth and development of fruiting bodies of the fungus. There were significant differences (P<0.05) among substrates in terms of number of days to complete mycelia run, with the least recorded in palm fruit shaft (25.20), and the highest in kenaf (32.40). Total yield also differed significantly (P<0.05), with the highest in palm fruit shaft (51.4 g 100 g-1) and lowest in plantain leaves (6.0 g 100 g-1). There was also significant difference (P<0.05) in the nutritional content of fruiting bodies, the highest fat content being on plantain leaves (1.72 g 100 g-1) and the lowest on palm fruit shaft (0.55 g 100 g-1). The trend was similar for mushroom substrates, plantain leaves having (2.55 g 100 g-1) and palm fruit shaft, (0.41g 100 g-1). Starch content for fruiting bodies was highest on sawdust (5.31 g 100 g-1) and lowest on kenaf (2.66 g 100 g-1), while for mushroom substrates, kenaf was (0.33g 100 g-1) and palm fruit shaft was (4.45g 100 g-1). There was a positive correlation (r = 0.24) between the nutrient of fruiting bodies and that of the substrate on which it was cultivated.
Resumo:
High quality snap bean ( Phaseolus vulgaris L. ) can be produced under rain-fed conditions, provided that adequate moisture is available. However, drought may occur at any stage of growth of snap bean. The objective of this study was to evaluate the effect of drought stress at different growth stages on pod physical quality and nutrient concentrations. An experiment was conducted at the Horticulture Greenhouse, Hawassa University in Ethiopia. Drought stress (50% of field capacity [FC]) was applied at the unfolding of the fourth trifoliate leaf, flowering and pod formation, against a control with no drought stress. The drought stress treatments and eight cultivars were arranged as a factorial experiment in a completely randomised design, with three replications. Drought stress (50% FC) during reproductive stages significantly (P<0.05) reduced pod texture, appearance, and pod curvature. Drought stress increased protein and zinc concentrations by 41 and 15%, respectively; but reduced iron concentration by 15% in snap bean pods. All the tested cultivars had relatively similar responses to drought stress.
Resumo:
2016
Resumo:
The objective of this study was to evaluate the effects of water volume and water temperature on the sperm motility duration and the number of spermatozoa, and the water volume on the fertilization rates of oocytes of Rhinelepis aspera. Experiments were carried out to evaluate the effect of semen dilutions (1.74×10-5, 1.74×10-4, 1.74×10-3, 1.74×10-2, 1.74×10-1 and 1.00 mL of sperm.mL-1 of water) and water temperature (5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 ºC) on spermatozoa motility duration. In addition, the effects of insemination dose (7×10³, 7×10(4), 7×10(5), 7×10(6) and 7×10(7) spermatozoa.oocyte-1) and water volume (1.0, 30.0, 60.0, 90.0 and 120.0 mL water.2.0 mL-1 oocytes) on the artificial fertilization rates of oocytes were evaluated. The longest sperm motility duration were observed for the semen dilution of 1.74×10-5 mL semen.mL-1 water and in water at 5 ºC. The highest fertilization rates were obtained for insemination doses between 7.00×10³ and 1.23×10(7) spermatozoa. oocyte-1 and water volume of 28.11 mL water.2.0 mL-1 oocytes.
Resumo:
The challenge for wastewater professionals is to design and operate treatment processes that support human well being and are environmentally sensitive throughout the life-cycle. This research focuses on one technology for small-scale wastewater treatment: the vertical flow constructed wetland (VFCW), which is herein investigated for the capacity to remove ammonium and nitrate nitrogen from wastewater. Hydraulic regime and presence/absence of vegetation are the basis for a three-phase bench scale experiment to determine oxygen transfer and nitrogen fate in VFCWs. Results show that 90% NH4+-N removal is achieved in aerobic downflow columns, 60% NO3--N removal occurs in anaerobic upflow columns, and 60% removal of total nitrogen can be achieved in downflow-upflow in-series. The experimental results are studied further using a variably saturated flow and reactive transport model, which allows a mechanistic explanation of the fate and transport of oxygen and nitrogen. The model clarifies the mechanisms of oxygen transport and nitrogen consumption, and clarifies the need for readily biodegradable COD for denitrification. A VFCW is then compared to a horizontal flow constructed wetland (HFCW) for life cycle environmental impacts. High areal emissions of greenhouse gases from VFCWs compared to HFCWs are the driver for the study. The assessment shows that because a VFCW is only 25% of the volume of an HFCW designed for the same treatment quality, the VFCW has only 25-30% of HFCW impacts over 12 impact categories and 3 damage categories. Results show that impacts could be reduced by design improvements. Design recommendations are downflow wetlands for nitrification, upflow wetlands for denitrification, series wetlands for total nitrogen removal, hydraulic load of 142 L/m2d, 30 cm downflow wetland depth, 1.0 m upflow wetland depth, recycle, vegetation and medium-grained sand. These improvements will optimize nitrogen removal, minimize gaseous emissions, and reduce wetland material requirements, thus reducing environmental impact without sacrificing wastewater treatment quality.
Resumo:
Facial attractiveness is a particularly salient social cue that influences many important social outcomes. Using a standard key-press task to measure motivational salience of faces and an old/new memory task to measure memory for face photographs, this thesis investigated both within-woman and between-women variations in response to facial attractiveness. The results indicated that within-woman variables, such as fluctuations in hormone levels, influenced the motivational salience of facial attractiveness. However, the between-women variable, romantic relationship status, did not appear to modulate women’s responses to facial attractiveness. In addition to attractiveness, dominance also contributed to both the motivational salience and memorability of faces. This latter result demonstrates that, although attractiveness is an important factor for the motivational salience of faces, other factors might also cause faces to hold motivational salience. In Chapter 2, I investigated the possible effects of women’s salivary hormone levels (estradiol, progesterone, testosterone, and estradiol-to-progesterone ratio) on the motivational salience of facial attractiveness. Physically attractive faces generally hold greater motivational salience, replicating results from previous studies. Importantly, however, the effect of attractiveness on the motivational salience of faces was greater in test sessions where women had high testosterone levels. Additionally, the motivational salience of attractive female faces was greater in test sessions where women had high estradiol-to-progesterone ratios. While results from Chapter 2 suggested that the motivational salience of faces was generally positively correlated with their physical attractiveness, Chapter 3 explored whether physical characteristics other than attractiveness contributed to the motivational salience of faces. To address this issue, I first had the faces rated on multiple traits. Principal component analysis of third-party ratings of faces for these traits revealed two orthogonal components that were highly correlated with trustworthiness and dominance ratings respectively. Both components were positively and independently related to the motivational salience of faces. While Chapter 2 and 3 did not examine the between-woman differences in response to facial attractiveness, Chapter 4 examined whether women’s responses to facial attractiveness differed as a function of their romantic partnership status. As several researchers have proposed that partnership status influences women’s perception of attractiveness, in Chapter 4 I compared the effects of men’s attractiveness on partnered and unpartnered women’s performance on two response measures: memory for face photographs and the motivational salience of faces. Consistent with previous research, women’s memory was poorer for face photographs of more attractive men and more attractive men’s faces held greater motivational salience. However, in neither study were the effects of attractiveness modulated by women’s partnership status or partnered women’s reported commitment to or happiness with their romantic relationship. A key result from Chapter 4 was that more attractive faces were harder to remember. Building on this result, Chapter 5 investigated the different characteristics that contributed to the memorability of face photographs. While some work emphasizes relationships with typicality, familiarity, and memorability ratings, more recent work suggests that ratings of social traits, such as attractiveness, intelligence, and responsibility, predict the memorability of face photographs independently of typicality, familiarity, and memorability ratings. However, what components underlie these traits remains unknown, as well as whether these components relate to the actual memorability of face photographs. Principal component analysis of all these face ratings produced three orthogonal components that were highly correlated with trustworthiness, dominance, and memorability ratings, respectively. Importantly, each of these components also predicted the actual memorability of face photographs.
Resumo:
A Pseudosamanea guachapele (guachapele), leguminosa arbórea fixadora de nitrogênio, é uma alternativa para plantios florestais mistos nos trópicos. Como são escassas as informações sobre a espécie em plantios mistos de eucalipto em condições edafoclimáticas brasileiras, foi conduzido um experimento no qual objetivou-se avaliar a contribuição da fixação biológica de nitrogênio para a guachapele e a velocidade de decomposição e de liberação de nutrientes de folhas senescentes de eucalipto e guachapele (oriundas dos plantios puros e consorciado). A porcentagem de N derivado da atmosfera (% Ndfa) foi estimada comparando-se a abundância natural de 15N ( 15N, ) nos tecidos da guachapele com a observada nos tecidos do Eucalyptus grandis, espécie não fixadora, ambas com sete anos de idade. A constante de decomposição (k) e a meia-vida (t1/2) de serapilheira foram estimadas utilizando-se o modelo exponencial aplicado aos dados oriundos de coletas de litterbags. A estimativa da %Ndfa para guachapele, em condições de plantio puro, variou de 17 a 36%, enquanto que, em condições de plantio consorciado, foi de 35 a 60 %. A concentração de N nas folhas senescentes estava positivamente relacionada com a taxa de decomposição, sendo essa decrescente da guachapele para o eucalipto. A t1/2 dos resíduos diferiu significativamente (p < 0.05), sendo de 148, 185 e 218 dias para as folhas de guachapele, mistura das duas espécies e eucalipto, respectivamente. A liberação dos nutrientes (principalmente N, K e Mg) das folhas seguiu a mesma ordem da t1/2 devido à qualidade inicial das mesmas. Os resultados indicam que a guachapele pode beneficiar o plantio misto pela adição de N e por meio da intensificação da decomposição da serapilheira.
Resumo:
2016
Resumo:
Cassava waste and soybean cake waste are by - product from home industry that have been used as animal feed. It contain high crude fibber, there fore it must be processed or added with another nutrients before feeding to animal to get a good performance. A research have been conducted in Experimental Farm and Laboratory Animal of Feed and Nutrition, Animal Science Faculty, Jenderal Soedirman University, Purwokerto at October- Nopember 2001. The purpose of the research is to find the effect of urea and sulfur level in mixing of cassava waste fermented and soybean cake waste on nitrogen balance and digestibility of energy of local male sheep. Eighteen local male sheep were divided into 3 group based of the body weight. There are I = 18.55±1.27 kg, II = 15.79±0.67 kg and III = 13.41±1.33 kg. Two level of urea (2% and 3%) and three level of sulfur (0 %, 0.15 % and 0.30%) dry matter concentrate used as treatments, there fore factorial  design 2x3 with Randomized Block Design used this experiment All of treatment received same diet consist land grass and concentrates with 70:30 dry matter ratio. Concentrates consists cassava waste fermented and soybean cake waste with 77.50:22.50 dry matter ratio. Dry matter intake was 4 % body weight. Observed variables were nitrogen balance and digestibility of energy by using total collection. Variance analysis was used for knowing the effect treatment on the variable observed. The result of the research shown that level of urea and sulfur are not significant interaction on the nitrogen balance and digestibility of energy. However level urea and sulfur itself are significant on nitrogen balance linearly. Level urea also had significant effect on the energy digestion. Balance nitrogen of all treatment is positive. Level of urea 3 % and sulfur 0.30% gave a good balance nitrogen and energy digestion. It can be concluded that addition of urea and sulfur in diet containing fermentable carbohydrates can increase balance nitrogen (N retention) and energy digestion. (Animal Production 3(2): 91-97 (2001)Key Words: Balance nitrogen, energy digestion, cassava waste and soybean cake waste
Resumo:
Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world’s population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments.
Resumo:
通过覆盖措施提高水分利用率对旱地农业生产具有重要意义。该文采用田间对比试验,研究了旱地冬小麦几种覆盖栽培下产量、水分利用率、土壤水分剖面和硝态氮的分布的差异。结果表明,地膜和秸秆双元覆盖模式下小麦籽粒产量比对照增产12.11%~17.65%,水分利用效率(WUE)比常规栽培提高7.2%~30.8%,土壤0~20 cm土层的含水量提高到12%~16%,硝态氮含量提高到4.70~10.17 mg/kg。地膜和秸秆双元覆盖模式能够显著的提高作物产量和水分利用率,并显著增加耕层土壤中水分含量和硝态氮含量,减轻了土壤剖面硝态氮的淋溶累积。
Resumo:
探讨了不同供水条件下土壤水分与作物产量的关系。[方法]以冬小麦品种长旱58为试材,设肥力和水分2因子高、中、低3水平9个处理组合,通过试验资料分析了不同养分和水分条件下作物的产量响应。利用2006年9月~2007年7月的气象资料研究了冬小麦不同生育期耗水量。[结果]各生育期耗水量占全生育期总耗水量的百分比以孕穗灌浆期最大,达45.6%,其次为拔节期,约21.5%,越冬期最小,约8.4%。底墒对旱作作物产量具有重要影响,施肥量过量会影响农田水分循环过程,使得高产农田的产量随降水量的变化而波动。[结论]提高作物土壤耗水量和土壤底墒利用率是黄土高原旱地农业实现高产稳产的关键。