963 resultados para Niobium phosphates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chief obstacle to understand the metabolic origin of life or RNA-based life is to identify a plausible mechanism for overcoming the clutter wrought by abiotic chemistry. Probably trough simple abiotic and then prebiotic reactions we could arrive to simple pre-RNA molecules. Here we report a possible preibiotic synthesis for heterocyclic compounds, and a self-assembling process of adenosine phosphates a constituent of RNA. In these processes we use a simple and prebiotic phosphorus cyclic compounds, as P4O10 and its derivatives. The processes are driven by the formation of hypercoordinated species that activate the processes by a factor of 106-8.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition metal-catalyzed allylic alkylation (Tsuji-Trost type reaction) is a powerful tool for C-C, C-N, and C-O bond formation, which has been widely applied to organic chemistry over the last decades. Typical substrates for this transformation are activated allylic compounds such as halides, esters, carbonates, carbamates, phosphates, and so on. However, use of these substrates is associated with the disadvantage of generating a stoichiometric amount of chemical waste. Furthermore, these starting materials have to be prepared in an extra step from the corresponding allylic alcohol. Thus, ideal substrates would be the allylic alcohols themselves, with water being the only byproduct in this case. However, the scarse propensity of the hydroxyl moiety to act as good leaving group has significantly limited their use so far. During the last decade significant efforts have been made in order to develop more atom-economical and environmentally-friendly allylic alkylation protocols by employing allylic alcohols directly. In this PhD dissertation two main projects addressing this topic are presented. “Project 1” deals with the development of new metal-catalyzed intramolecular Friedel-Crafts (FC) allylic alkylations of electron-rich (PAPER A), as well as challenging electron-poor arenes (PAPER B) with alcohols. In “Project 2”, gold(I)-catalyzed intramolecular and stereoselective allylic alkylation reactions are reported. In particular, a FC alkylation of indole-containing allylic alcohols is presented in PAPER C. While, an O-alkylation of aminol-containing allylic alcohols is reported in PAPER D. To the best of knowledge, these reports represent the first example of gold(I)-catalyzed stereoselective alkylations with alcohols.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary aim of this dissertation to identify subgroups of patients with chronic kidney disease (CKD) who have a differential risk of progression of illness and the secondary aim is compare 2 equations to estimate the glomerular filtration rate (GFR). To this purpose, the PIRP (Prevention of Progressive Kidney Disease) registry was linked with the dialysis and mortality registries. The outcome of interest is the mean annual variation of GFR, estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation. A decision tree model was used to subtype CKD patients, based on the non-parametric procedure CHAID (Chi-squared Automatic Interaction Detector). The independent variables of the model include gender, age, diabetes, hypertension, cardiac diseases, body mass index, baseline serum creatinine, haemoglobin, proteinuria, LDL cholesterol, tryglycerides, serum phoshates, glycemia, parathyroid hormone and uricemia. The decision tree model classified patients into 10 terminal nodes using 6 variables (gender, age, proteinuria, diabetes, serum phosphates and ischemic cardiac disease) that predict a differential progression of kidney disease. Specifically, age <=53 year, male gender, proteinuria, diabetes and serum phosphates >3.70 mg/dl predict a faster decrease of GFR, while ischemic cardiac disease predicts a slower decrease. The comparison between GFR estimates obtained using MDRD4 and CKD-EPI equations shows a high percentage agreement (>90%), with modest discrepancies for high and low age and serum creatinine levels. The study results underscore the need for a tight follow-up schedule in patients with age <53, and of patients aged 54 to 67 with diabetes, to try to slow down the progression of the disease. The result also emphasize the effective management of patients aged>67, in whom the estimated decrease in glomerular filtration rate corresponds with the physiological decrease observed in the absence of kidney disease, except for the subgroup of patients with proteinuria, in whom the GFR decline is more pronounced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of the amount of Nb, used as a dopant for VPP, and how its presence may affect the generation of the active and selective δ-VOPO4 at the VPP surface under reaction conditions, was investigated, employing ex-situ and in-situ characterisation techniques. We found that Nb indeed may favour, under specific conditions, the generation of the desired δ-VOPO4 compound; however, its effect of enhancement of catalytic behaviour was not simply proportional to its concentration. In order to better understand how Nb may affect the generation of the active phase, we prepared V/Nb mixed phosphates; the formation of a solid solution was possible only under specific conditions, with a limited reciprocal dissolution of the two elements. We concluded that even though the incorporation of small amounts of Nb5+ in the VOPO4 (and also of V5+ in NbOPO4) cannot be excluded, a phenomenon which might favour the generation of the desired δ-VOPO4 compound, however the main role of Nb5+ was related to a modification of the redox properties of V4+ in the VPP, and specifically of the redox potential associated to the couple V4+/V5+. This led to a catalyst that during reaction was more oxidized than the corresponding undoped VPP, which under specific reaction conditions allowed obtain a better selectivity to MA. Oppositely, an excessive oxidation of VPP (catalysts having high [Nb]) affected negatively the MA selectivity, because of the excessive formation of COx. A preliminary study regarding the oxidehydration of 1-butanol into MA was carried out testing various catalysts: the best catalyst resulted VPP; however the MA selectivity was lower than that obtained from n-butane. With in-situ/operando Raman study of the Nb-doped and undoped catalysts we verified that the redox cycle involves the VPP and the δ-VOPO4 compounds, that the reoxidation step of V4+ in VPP is the rate-determining one.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present research thesis was focused on the development of new biomaterials and devices for application in regenerative medicine, particularly in the repair/regeneration of bone and osteochondral regions affected by degenerative diseases such as Osteoarthritis and Osteoporosis or serious traumas. More specifically, the work was focused on the synthesis and physico-chemical-morphological characterization of: i) a new superparamagnetic apatite phase; ii) new biomimetic superparamagnetic bone and osteochondral scaffolds; iii) new bioactive bone cements for regenerative vertebroplasty. The new bio-devices were designed to exhibit high biomimicry with hard human tissues and with functionality promoting faster tissue repair and improved texturing. In particular, recent trends in tissue regeneration indicate magnetism as a new tool to stimulate cells towards tissue formation and organization; in this perspective a new superparamagnetic apatite was synthesized by doping apatite lattice with di-and trivalent iron ions during synthesis. This finding was the pin to synthesize newly conceived superparamagnetic bone and osteochondral scaffolds by reproducing in laboratory the biological processes yielding the formation of new bone, i.e. the self-assembly/organization of collagen fibrils and heterogeneous nucleation of nanosized, ionically substituted apatite mimicking the mineral part of bone. The new scaffolds can be magnetically switched on/off and function as workstations guiding fast tissue regeneration by minimally invasive and more efficient approaches. Moreover, in the view of specific treatments for patients affected by osteoporosis or traumas involving vertebrae weakening or fracture, the present work was also dedicated to the development of new self-setting injectable pastes based on strontium-substituted calcium phosphates, able to harden in vivo and transform into strontium-substituted hydroxyapatite. The addition of strontium may provide an anti-osteoporotic effect, aiding to restore the physiologic bone turnover. The ceramic-based paste was also added with bio-polymers, able to be progressively resorbed thus creating additional porosity in the cement body that favour cell colonization and osseointegration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The specific energy of lithium-ion batteries (LIBs) is today 200 Wh/kg, a value not sufficient to power fully electric vehicles with a driving range of 400 km which requires a battery pack of 90 kWh. To deliver such energy the battery weight should be higher than 400 kg and the corresponding increase of vehicle mass would narrow the driving range to 280 km. Two main strategies are pursued to improve the energy of the rechargeable lithium batteries up to the transportation targets. The first is the increase of LIBs working voltage by using high-voltage cathode materials. The second is the increase of battery capacity by the development of a cell chemistry where oxygen redox reaction (ORR) occurs at the cathode and metal lithium is the anode (Li/O2 battery). This PhD work is focused on the development of high-voltage safe cathodes for LIBs, and on the investigation of the feasibility of Li/O2 battery operating with ionic liquid(IL)-based electrolytes. The use of LiMn1-xFexPO4 as high-voltage cathode material is discussed. Synthesis and electrochemical tests of three different phosphates, more safe cathode materials than transition metal oxides, are reported. The feasibility of Li/O2 battery operating in IL-based electrolytes is also discussed. Three aspects have been investigated: basic aspects of ORR, synthesis and characterization of porous carbons as positive electrode materials and study of limiting factors to the electrode capacity and cycle-life. Regarding LIBs, the findings on LiMnPO4 prepared by soluble precursors demonstrate that a good performing Mn-based olivine is viable without the coexistence of iron. Regarding Li/O2 battery, the oxygen diffusion coefficient and concentration values in different ILs were obtained. This work highlighted that the O2 mass transport limits the Li/O2 capacity at high currents; it gave indications on how to increase battery capacity by using a flow-cell and a porous carbon as cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bisher ist bei forensischen Untersuchungen von Explosionen die Rückverfolgung der verwendeten Sprengstoffe begrenzt, da das Material in aller Regel bei der Explosion zerstört wird. Die Rückverfolgung von Sprengstoffen soll mit Hilfe von Identifikations-Markierungssubstanzen erleichtert werden. Diese stellen einen einzigartigen Code dar, der auch nach einer Sprengung wiedergefunden und identifiziert werden kann. Die dem Code zugeordneten, eindeutigen Informationen können somit ausgelesen werden und liefern der Polizei bei der Aufklärung weitere Ansätze.rnZiel der vorliegenden Arbeit ist es, das Verhalten von ausgewählten Seltenerdelementen (SEE) bei Explosion zu untersuchen. Ein auf Lanthanoidphosphaten basierender Identifikations-Markierungsstoff bietet die Möglichkeit, verschiedene Lanthanoide innerhalb eines einzelnen Partikels zu kombinieren, wodurch eine Vielzahl von Codes generiert werden kann. Somit kann eine Veränderung der Ausgangszusammensetzung des Codes auch nach einer Explosion durch die Analyse eines einzelnen Partikels sehr gut nachvollzogen und somit die Eignung des Markierungsstoffes untersucht werden. Eine weitere Zielsetzung ist die Überprüfung der Anwendbarkeit der Massenspektrometrie mit induktiv gekoppeltem Plasma (ICP-MS) und Partikelanalyse mittels Rasterelektronenmikroskopie (REM) für die Analyse der versprengten Identifikations-Markierungssubstanzen. rnDie Ergebnisbetrachtungen der ICP-MS-Analyse und REM-Partikelanalyse deuten zusammenfassend auf eine Fraktionierung der untersuchten Lanthanoide oder deren Umsetzungsprodukte nach Explosion in Abhängigkeit ihrer thermischen Belastbarkeit. Die Befunde zeigen eine Anreicherung der Lanthanoide mit höherer Temperaturbeständigkeit in größeren Partikeln, was eine Anreicherung von Lanthanoiden mit niedrigerer Temperaturbeständigkeit in kleineren Partikeln impliziert. Dies lässt sich in Ansätzen durch einen Fraktionierungsprozess in Abhängigkeit der Temperaturstabilität der Lanthanoide oder deren Umsetzungsprodukten erklären. Die der Fraktionierung zugrunde liegenden Mechanismen und deren gegenseitige Beeinflussung bei einer Explosion konnten im Rahmen dieser Arbeit nicht abschließend geklärt werden.rnDie generelle Anwendbarkeit und unter Umständen notwendige, komplementäre Verwendung der zwei Methoden ICP-MS und REM-Partikelanalyse wird in dieser Arbeit gezeigt. Die ICP-MS stellt mit großer untersuchter Probenfläche und hoher Genauigkeit eine gute Methode zur Charakterisierung der Konzentrationsverhältnisse der untersuchten Lanthanoide dar. Die REM-Partikelanalyse hingegen ermöglicht im Falle von Kontamination der Proben mit anderen Lanthanoid-haltigen Partikeln eine eindeutige Differenzierung der Elementvergesellschaftung pro Partikel. Sie kann somit im Gegensatz zur ICP-MS Aufschluss über die Art und Zusammensetzung der Kontamination geben. rnInnerhalb der vorgenommenen Untersuchungen stellte die bei der ICP-MS angewandte Probennahmetechnik eine ideale Art der Probennahme dar. Bei anderen Oberflächen könnte diese jedoch in Folge der in verschiedenen Partikelgrößen resultierenden Fraktionierung zu systematisch verfälschten Ergebnissen führen. Um die generelle Anwendbarkeit der ICP-MS im Hinblick auf die Analyse versprengter Lanthanoide zu gewährleisten, sollte eine Durchführung weiterer Sprengungen auf unterschiedlichen Probenoberflächen erfolgen und gegebenenfalls weitere Probennahme-, Aufschluss- und Anreicherungsverfahren evaluiert werden.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The project of this Ph.D. thesis is based on a co-supervised collaboration between Università di Bologna, ALMA MATER STUDIORUM (Italy) and Instituto de Tecnología Química, Universitat Politècnica de València ITQ-UPV (Spain). This Ph.D. thesis is about the synthesis, characterization and catalytic testing of complex mixed-oxide catalysts mainly related to the family of Hexagonal Tungsten Bronzes (HTBs). These materials have been little explored as catalysts, although they have a great potential as multifunctional materials. Their peculiar acid properties can be coupled to other functionalities (e.g. redox sites) by isomorphous substitution of tungsten atoms with other transition metals such as vanadium, niobium and molybdenum. In this PhD thesis, it was demonstrated how it is possible to prepare substituted-HTBs by hydrothermal synthesis; these mixed-oxide were fully characterize by a number of physicochemical techniques such as XPS, HR-TEM, XAS etc. They were also used as catalysts for the one-pot glycerol oxidehydration to acrylic acid; this reaction might represent a viable chemical route to solve the important issue related to the co-production of glycerin along the biodiesel production chain. Acrylic acid yields as high as 51% were obtained and important structure-reactivity correlations were proved to govern the catalytic performance; only fine tuning of acid and redox properties as well as the in-framework presence of vanadium are fundamental to achieve noteworthy yields into the acid monomer. The overall results reported herein might represent an important contribution for future applications of HTBs in catalysis as well as a general guideline for a multifaceted approach for their physicochemical characterization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, global meat market is facing several dramatic changes due to shifting in diet and life style, consumer demands, and economical considerations. Firstly, there was a tremendous increase in the poultry meat demand. Furthermore, current forecast and projection studies pointed out that the expansion of the poultry market will continue in future. In response to this demand, there was a great success to increase growth rate of meat-type chickens in the last few decades in order to optimize the production of poultry meat. Accordingly, the increase of growth rate induced the appearance of several muscle abnormalities such as pale-soft-exudative (PSE) syndrome and deep-pectoral-myopathy (DPM) and more recently white striping and wooden breast. Currently, there is growing interest in meat industry to understand how much the magnitude of the effect of these abnormalities on different quality traits for raw and processed meat. Therefore, the major part of the research activities during the PhD project was dedicated to evaluate the different implications of recent muscle abnormalities such as white striping and wooden breast on meat quality traits and their incidence under commercial conditions. Generally, our results showed that the incidence of these muscle abnormalities was very high under commercial conditions and had great adverse impact on meat quality traits. Secondly, there is growing market share of convenient, healthy, and functional processed meat products. Accordingly, the remaining part of research activities of the PhD project was dedicated to evaluate the possibility to formulate processed meat products with higher perceived healthy profile such as phosphate free-marinated chicken meat and low sodium-marinated rabbit meat products. Overall all findings showed that sodium bicarbonate can be considered as promising component to replace phosphates in meat products, while potassium chloride under certain conditions was successfully used to produce low marinated rabbit meat products.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The EBPR (Enhanced Biological Phosphorus Removal) is a type of secondary treatment in WWTPs (WasteWater Treatment Plants), quite largely used in full-scale plants worldwide. The phosphorus occurring in aquatic systems in high amounts can cause eutrophication and consequently the death of fauna and flora. A specific biomass is used in order to remove the phosphorus, the so-called PAOs (Polyphosphate Accumulating Organisms) that accumulate the phosphorus in form of polyphosphate in their cells. Some of these organisms, the so-called DPAO (Denitrifying Polyphosphate Accumulating Organisms) use as electron acceptor the nitrate or nitrite, contributing in this way also to the removal of these compounds from the wastewater, but there could be side reactions leading to the formation of nitrous oxides. The aim of this project was to simulate in laboratory scale a EBPR, acclimatizing and enriching the specialized biomass. Two bioreactors were operated as Sequencing Batch Reactors, one enriched in Accumulibacter, the other in Tetrasphaera (both PAOs): Tetrasphaera microorganisms are able to uptake aminoacids as carbon source, Accumulibacter uptake organic carbon (volatile fatty acids, VFA). In order to measure the removal of COD, phosphorus and nitrogen-derivate compounds, different analysis were performed: spectrophotometric measure of phosphorus, nitrate, nitrite and ammonia concentrations, TOC (Total Organic Carbon, measuring the carbon consumption), VFA via HPLC (High Performance Liquid Chromatography), total and volatile suspended solids following standard methods APHA, qualitative microorganism population via FISH (Fluorescence In Situ Hybridization). Batch test were also performed to monitor the NOx production. Both specialized populations accumulated as a result of SBR operations; however, Accumulibacter were found to uptake phosphates at higher extents. Both populations were able to remove efficiently nitrates and organic compounds occurring in the feeding. The experimental work was carried out at FCT of Universidade Nova de Lisboa (FCT-UNL) from February to July 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

myo-Inositol is an essential precursor for the production of inositol phosphates and inositol phospholipids in all eukaryotes. Intracellular myo-inositol is generated by de novo synthesis from glucose 6-phosphate or is provided from the environment via myo-inositol symporters. We show that in Trypanosoma brucei, the causative pathogen of human African sleeping sickness and nagana in domestic animals, myo-inositol is taken up via a specific proton-coupled electrogenic symport and that this transport is essential for parasite survival in culture. Down-regulation of the myo-inositol transporter using RNA interference inhibited uptake of myo-inositol and blocked the synthesis of the myo-inositol-containing phospholipids, phosphatidylinositol and inositol phosphorylceramide; in contrast, it had no effect on glycosylphosphatidylinositol production. This together with the unexpected localization of the myo-inositol transporter in both the plasma membrane and the Golgi demonstrate that metabolism of endogenous and exogenous myo-inositol in T. brucei is strictly segregated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic resonance spectroscopy (MRS) of skeletal muscle has been successfully applied by physiologists over several decades, particularly for studies of high-energy phosphates (by (31)P-MRS) and glycogen (by (13)C-MRS). Unfortunately, the observation of these heteronuclei requires equipment that is typically not available on clinical MR scanners, such as broadband capability and a second channel for decoupling and nuclear Overhauser enhancement (NOE). On the other hand, (1)H-MR spectra of skeletal muscle can be acquired on many routine MR systems and also provide a wealth of physiological information. In particular, studies of intramyocellular lipids (IMCL) attract physiologists and endocrinologists because IMCL levels are related to insulin resistance and thus can lead to a better understanding of major health problems in industrial countries. The combination of (1)H-, (13)C-, and (31)P-MRS gives access to the major long- and short-term energy sources of skeletal muscle. This review summarizes the technical aspects and unique MR-methodological features of the different nuclei. It reviews clinical studies that employed MRS of one or more nuclei, or combinations of MRS with other MR modalities. It also illustrates that MR spectra contain additional physiological information that is not yet used in routine clinical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phosphomolybdic acid (H3PMo12O40) along with niobium,pyridine and niobium exchanged phosphomolybdic acid catalysts were prepared. Ammonia adsorption microcalorimetry and methanol oxidation studies were carried out to investigate the acid sites strength acid/base/redox properties of each catalyst. The addition of niobium, pyridine or both increased the ammonia heat of adsorption and the total uptake. The catalyst with both niobium and pyridine demonstrated the largest number of strong sites. For the parent H3PMo12O40 catalyst, methanol oxidation favors the redox product. Incorporation of niobium results in similar selectivity to redox products but also results in no catalyst deactivation. Incorporation of pyridine instead changes to the selectivity to favor the acidic product. Finally, the inclusion of both niobium and pyridine results in strong selectivity to the acidic product while also showing no catalyst deactivation. Thus the presence of pyridine appears to enhance the acid property of the catalyst while niobium appears to stabilize the active site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the biggest issues of modern materials science is developing of strategies to create large and ordered assemblies in the form of discrete nanoscale objects. Oligopyrenotides (OPs) represent novel class of amphiphilic molecules which tend to self-assemble forming highly ordered structures. As has been already shown OPs are able to form 1D («rod-like») supramolecular polymer [1]. Since programmed arraying of polyaromatic hydrocarbons in structurally defined objects could offer enhanced performance over the individual components, prediction and controlling of their spatial arrangement remains challenging. Herein we demonstrate that certain changes to design of pyrene’s molecular core allow Py3 form 2D supramolecular assemblies («nanosheets») instead of 1D. Two dimensional supramolecular polymers are attractive objects due to their exceptional properties which originate from in-plan alignment of molecular units in the sheets with constant thickness ~ 2 nm [2]. These assemblies have high degree of internal order: the interior consists of hydrophobic pyrenes and alkyl chains, whereas the exterior exists as a net of hydrophilic, negatively charged phosphates. The Py3 units are hold up by non-covalent interactions what makes these assemblies totally reversible. Moreover the polymerization occurs via nucleation-elongation mechanism. To study Py3 self-assembly, we carried out whole set of spectroscopic (UV/vis, fluorescence, DLS) and microscopic experiments (AFM)