977 resultados para New Jersey Coastal Heritage Trail (N.J.)--Maps.
Resumo:
Distribution, movements, and habitat use of small (<46 cm, juveniles and individuals of unknown maturity) striped bass (Morone saxatilis) were investigated with multiple techniques and at multiple spatial scales (surveys and tag-recapture in the estuary and ocean, and telemetry in the estuary) over multiple years to determine the frequency and duration of use of non-natal estuaries. These unique comparisons suggest, at least in New Jersey, that smaller individuals (<20 cm) may disperse from natal estuaries and arrive in non-natal estuaries early in life and take up residence for several years. During this period of estuarine residence, individuals spend all seasons primarily in the low salinity portions of the estuary. At larger sizes, they then leave these non-natal estuaries to begin coastal migrations with those individuals from nurseries in natal estuaries. These composite observations of frequency and duration of habitat use indicate that non-natal estuaries may provide important habitat for a portion of the striped bass population.
Resumo:
This article covers the biology and the history of the bay scallop habitats and fishery from Massachusetts to North Carolina. The scallop species that ranges from Massachusetts to New York is Argopecten irradians irradians. In New Jersey, this species grades into A. i. concentricus, which then ranges from Maryland though North Carolina. Bay scallops inhabit broad, shallow bays usually containing eelgrass meadows, an important component in their habitat. Eelgrass appears to be a factor in the production of scallop larvae and also the protection of juveniles, especially, from predation. Bay scallops spawn during the warm months and live for 18–30 months. Only two generations of scallops are present at any time. The abundances of each vary widely among bays and years. Scallops were harvested along with other mollusks on a small scale by Native Americans. During most of the 1800’s, people of European descent gathered them at wading depths or from beaches where storms had washed them ashore. Scallop shells were also and continue to be commonly used in ornaments. Some fishing for bay scallops began in the 1850’s and 1860’s, when the A-frame dredge became available and markets were being developed for the large, white, tasty scallop adductor muscles, and by the 1870’s commercial-scale fishing was underway. This has always been a cold-season fishery: scallops achieve full size by late fall, and the eyes or hearts (adductor muscles) remain preserved in the cold weather while enroute by trains and trucks to city markets. The first boats used were sailing catboats and sloops in New England and New York. To a lesser extent, scallops probably were also harvested by using push nets, picking them up with scoop nets, and anchor-roading. In the 1910’s and 1920’s, the sails on catboats were replaced with gasoline engines. By the mid 1940’s, outboard motors became more available and with them the numbers of fishermen increased. The increases consisted of parttimers who took leaves of 2–4 weeks from their regular jobs to earn extra money. In the years when scallops were abundant on local beds, the fishery employed as many as 10–50% of the towns’ workforces for a month or two. As scallops are a higher-priced commodity, the fishery could bring a substantial amount of money into the local economies. Massachusetts was the leading state in scallop landings. In the early 1980’s, its annual landings averaged about 190,000 bu/yr, while New York and North Carolina each landed about 45,000 bu/yr. Landings in the other states in earlier years were much smaller than in these three states. Bay scallop landings from Massachusetts to New York have fallen sharply since 1985, when a picoplankton, termed “brown tide,” bloomed densely and killed most scallops as well as extensive meadows of eelgrass. The landings have remained low, large meadows of eelgrass have declined in size, apparently the species of phytoplankton the scallops use as food has changed in composition and in seasonal abundance, and the abundances of predators have increased. The North Carolina landings have fallen since cownose rays, Rhinoptera bonsais, became abundant and consumed most scallops every year before the fishermen could harvest them. The only areas where the scallop fishery remains consistently viable, though smaller by 60–70%, are Martha’s Vineyard, Nantucket, Mass., and inside the coastal inlets in southwestern Long Island, N.Y.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England and Long Island, N.Y., made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has given consumers a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Tabasco leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certified beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
The northern quahog, Mercenaria mercenaria, ranges along the Atlantic Coast of North America from the Canadian Maritimes to Florida, while the southern quahog, M. campechiensis, ranges mostly from Florida to southern Mexico. The northern quahog was fished by native North Americans during prehistoric periods. They used the meats as food and the shells as scrapers and as utensils. The European colonists copied the Indians treading method, and they also used short rakes for harvesting quahogs. The Indians of southern New England made wampum from quahog shells, used it for ornaments and sold it to the colonists, who, in turn, traded it to other Indians for furs. During the late 1600’s, 1700’s, and 1800’s, wampum was made in small factories for eventual trading with Indians farther west for furs. The quahoging industry has provided people in many coastal communities with a means of earning a livelihood and has provided consumers with a tasty, wholesome food whether eaten raw, steamed, cooked in chowders, or as stuffed quahogs. More than a dozen methods and types of gear have been used in the last two centuries for harvesting quahogs. They include treading and using various types of rakes and dredges, both of which have undergone continuous improvements in design. Modern dredges are equipped with hydraulic jets and one type has an escalator to bring the quahogs continuously to the boats. In the early 1900’s, most provinces and states established regulations to conserve and maximize yields of their quahog stocks. They include a minimum size, now almost universally a 38-mm shell width, and can include gear limitations and daily quotas. The United States produces far more quahogs than either Canada or Mexico. The leading producer in Canada is Prince Edward Island. In the United States, New York, New Jersey, and Rhode Island lead in quahog production in the north, while Virginia and North Carolina lead in the south. Connecticut and Florida were large producers in the 1990’s. The State of Campeche leads in Mexican production. In the northeastern United States, the bays with large openings, and thus large exchanges of bay waters with ocean waters, have much larger stocks of quahogs and fisheries than bays with small openings and water exchanges. Quahog stocks in certifi ed beds have been enhanced by transplanting stocks to them from stocks in uncertified waters and by planting seed grown in hatcheries, which grew in number from Massachusetts to Florida in the 1980’s and 1990’s.
Resumo:
This study, part of a broader investigation of the history of exploitation of right whales, Balaena glacialis, in the western North Atlantic, emphasizes U.S. shore whaling from Maine to Delaware (from lat. 45°N to 38°30'N) in the period 1620–1924. Our broader study of the entire catch history is intended to provide an empirical basis for assessing past distribution and abundance of this whale population. Shore whaling may have begun at Cape Cod, Mass., in the 1620’s or 1630’s; it was certainly underway there by 1668. Right whale catches in New England waters peaked before 1725, and shore whaling at Cape Cod, Martha’s Vineyard, and Nantucket continued to decline through the rest of the 18th century. Right whales continued to be taken opportunistically in Massachusetts, however, until the early 20th century. They were hunted in Narragansett Bay, R.I., as early as 1662, and desultory whaling continued in Rhode Island until at least 1828. Shore whaling in Connecticut may have begun in the middle 1600’s, continuing there until at least 1718. Long Island shore whaling spanned the period 1650–1924. From its Dutch origins in the 1630’s, a persistent shore whaling enterprise developed in Delaware Bay and along the New Jersey shore. Although this activity was most profi table in New Jersey in the early 1700’s, it continued there until at least the 1820’s. Whaling in all areas of the northeastern United States was seasonal, with most catches in the winter and spring. Historically, right whales appear to have been essentially absent from coastal waters south of Maine during the summer and autumn. Based on documented references to specific whale kills, about 750–950 right whales were taken between Maine and Delaware, from 1620 to 1924. Using production statistics in British customs records, the estimated total secured catch of right whales in New England, New York, and Pennsylvania between 1696 and 1734 was 3,839 whales based on oil and 2,049 based on baleen. After adjusting these totals for hunting loss (loss-rate correction factor = 1.2), we estimate that 4,607 (oil) or 2,459 (baleen) right whales were removed from the stock in this region during the 38-year period 1696–1734. A cumulative catch estimate of the stock’s size in 1724 is 1,100–1,200. Although recent evidence of occurrence and movements suggests that right whales continue to use their traditional migratory corridor along the U.S. east coast, the catch history indicates that this stock was much larger in the 1600’s and early 1700’s than it is today. Right whale hunting in the eastern United States ended by the early 1900’s, and the species has been protected throughout the North Atlantic since the mid 1930’s. Among the possible reasons for the relatively slow stock recovery are: the very small number of whales that survived the whaling era to become founders, a decline in environmental carrying capacity, and, especially in recent decades, mortality from ship strikes and entanglement in fishing gear.
Resumo:
Over a century of fi shery and oceanographic research conducted along the Atlantic coast of the United States has resulted in many publications using unofficial, and therefore unclear, geographic names for certain study areas. Such improper usage, besides being unscholarly, has and can lead to identification problems for readers unfamiliar with the area. Even worse, the use of electronic data bases and search engines can provide incomplete or confusing references when improper wording is used. The two terms used improperly most often are “Middle Atlantic Bight” and “South Atlantic Bight.” In general, the term “Middle Atlantic Bight” usually refers to an imprecise coastal area off the middle Atlantic states of New York, New Jersey, Delaware, Maryland, and Virginia, and the term “South Atlantic Bight” refers to the area off the southeastern states of North Carolina, South Carolina, Georgia, and Florida’s east coast.
Resumo:
The National Oceanic and Atmospheric Administration (NOAA), in cooperation with the New Jersey Marine Sciences Consortium (NJMSC), hosted a workshop at Rutgers University on 19-21 September 2005 to explore ways to link the U.S. Integrated Ocean Observing System (IOOS) to the emerging infrastructure of the National Water Quality Monitoring Network (NWQMN). Participating partners included the Mid-Atlantic Coastal Ocean Observing Regional Association, U.S. Geological Survey, Rutgers University Coastal Ocean Observing Laboratory, and the New Jersey Sea Grant College. The workshop was designed to highlight the importance of ecological and human health linkages in the movement of materials, nutrients, organisms and contaminants along the Delaware Bay watershed-estuary-coastal waters gradient (hereinafter, the “Delaware Bay Ecosystem [DBE]”), and to address specific water quality issues in the mid-Atlantic region, especially the area comprising the Delaware River drainage and near-shore waters. Attendees included federal, state and municipal officials, coastal managers, members of academic and research institutions, and industry representatives. The primary goal of the effort was to identify key management issues and related scientific questions that could be addressed by a comprehensive IOOS-NWQMN infrastructure (US Commission on Ocean Policy 2004; U.S. Ocean Action Plan 2004). At a minimum, cooperative efforts among the three federal agencies (NOAA, USGS and EPA) involved in water quality monitoring were required. Further and recommended by the U.S. Commission on Ocean Policy, outreach to states, regional organizations, and tribes was necessary to develop an efficient system of data gathering, quality assurance and quality control protocols, product development, and information dissemination.
Resumo:
Management of coastal species of small cetaceans is often impeded by a lack of robust estimates of their abundance. In the Austral summers of 1997−98, 1998−99, and 1999−2000 we conducted line-transect surveys of Hector’s dolphin (Cephalorhynchus hectori) abundance off the north, east, and south coasts of the South Island of New Zealand. Survey methods were modified for the use of a 15-m sailing catamaran, which was equipped with a collapsible sighting platform giving observers an eye-height of 6 m. Eighty-six percent of 2061 km of survey effort was allocated to inshore waters (4 nautical miles [nmi] or 7.4 km from shore), and the remainder to offshore waters (4−10 nmi or 7.4–18.5 km from shore). Transects were placed at 45° to the shore and spaced apart by 1, 2, 4, or 8 nmi according to pre-existing data on dolphin density. Survey effort within strata was uniform. Detection functions for sheltered waters and open coasts were fitted separately for each survey. The effect of attraction of dolphins to the survey vessel and the fraction of dolphins missed on the trackline were assessed with simultaneous boat and helicopter surveys in January 1999. Hector’s dolphin abundance in the coastal zone to 4 nmi offshore was calculated at 1880 individuals (CV=15.7%, log-normal 95% CI=1384−2554). These surveys are the first line-transect surveys for cetaceans in New Zealand’s coastal waters.
Resumo:
This study reports new information about searobin (Prionotus spp.) early life history from samples collected with a Tucker trawl (for planktonic stages) and a beam trawl (for newly settled fish) from the coastal waters of New Jersey. Northern searobin, Prionotus carolinus, were much more numerous than striped searobin, P. evolans, often by an order of magnitude. Larval Prionotus were collected during the period July–October and their densities peaked during September. For both species, notochord flexion was complete at 6–7 mm standard length (SL) and individuals settled at 8–9 mm SL. Flexion occurred as early as 13 days after hatching and settlement occurred as late as 25 days after hatching, according to ages estimated from sagittal microincrements. Both species settled directly in continental shelf habitats without evidence of delayed metamorphosis. Spawning, larval dispersal, or settlement may have occurred within certain estuaries, particularly for P. evolans; thus collections from shelf areas alone do not permit estimates of total larval production or settlement rates. Reproductive seasonality of P. carolinus and P. evolans may vary with respect to latitude and coastal depth. In this study, hatching dates and sizes of age-0 P. carolinus varied with respect to depth or distance from the New Jersey shore. Older and larger age-0 individuals were found in deeper waters. These variations in searobin age and size appear to be the combined result of intraspecific variations in searobin reproductive seasonality and the limited capability of searobin eggs and larvae to disperse.
Resumo:
This article examines the concepts, definitions, policies, and practices of heritage in a contemporary context. Within recent years, there have been significant shifts in our understandings and applications of heritage concepts and policies in the modern world. ‘Heritage’ emerged as a buzz word in international policy arenas in the 1980s and early 1990s, and has since weathered the vagaries of turbulent definitional and governance–nomenclature storms, as traditional debates about ‘what it is and what it is not’ reverberate around academia and state agencies alike. Policy and funding structures for heritage are determined by the classifications used to define them in various countries. Typically, reference is made to ‘built heritage’, ‘natural heritage’, and ‘intangible heritage’, loosely reflecting buildings, landscapes, and culture. Aspects of heritage are used by the cultural and tourism industries to add economic value, through heritage tourism sites, museums, and other activities. The cultural tourism product is often anchored around notions of heritage, and in postmodern, post-tourist societies, boundaries between culture, (travel) space, and identities are increasingly blurred. Issues of authenticity become important in the representation of heritage, and questions are asked about the validity of nostalgia versus realism. The role of heritage is examined in the context of identity formulation at individual and nation-state levels, and the political aspects of this are also discussed. Finally, heritage conservation is assessed through an examination of UNESCO’s World Heritage Site listing and protection strategy. In a changing world, new constructs of heritage, identity, authenticity, and representation will continue to emerge as meanings are constantly renegotiated over time and space.
Resumo:
The garment we now recognise as the Aran jumper emerged as an international symbol of Ireland from the twin twentieth century transatlantic flows of migration and tourism. Its power as a heritage object derives from: 1) the myth commonly associated with the object, in which the corpse of a drowned fisherman is identified and claimed by his family due to the stitch patterns of his jumper (Pádraig Ó Síochain 1962; Annette Lynch and Mitchell Strauss 2014); 2) the meanings attached to those stitch patterns, which have been read, for example, as genealogical records, representations of the natural landscape and references to Christian and pre-Christian ‘Celtic’ religion (Heinz Kiewe 1967; Catherine Nash 1996); and 3) booming popular interest in textile heritage on both sides of the Atlantic, fed by the reframing of domestic crafts such as knitting as privileged leisure pursuits (Rachel Maines 2009; Jo Turney 2009). The myth of the drowned fisherman plays into transatlantic migration narratives of loss and reclamation, promising a shared heritage that needs only to be decoded. The idea of the garment’s surface acting as text (or map) situates it within a preliterate idyll of romantic primitivism, while obscuring the circumstances of its manufacture. The contemporary resurgence in home textile production as recreation, mediated through transnational online networks, creates new markets for heritage textile products while attracting critical attention to the processes through which such objects, and mythologies, are produced. The Aran jumper’s associations with kinship, domesticity and national character make it a powerful tool in the promotion of ancestral (or genealogical) tourism, through marketing efforts such as The Gathering 2013. Nash’s (2010; 2014) work demonstrates the potential for such touristic encounters to disrupt and enrich public conceptions of heritage, belonging and relatedness. While the Aran jumper has been used to commodify a simplistic sense of mutuality between Ireland and north America, it carries complex transatlantic messages in both directions.
Resumo:
Arthur Albert Schmon was born in 1895 in Newark, New Jersey. During his studies at Barringer High School in Newark, he met Eleanore Celeste Reynolds who was to become his wife in August of 1919. Mr. Schmon studied English literature at Princeton and graduated with honours in 1917. That same year, Mr. Schmon joined the United States Army where he served under Colonel McCormick as an adjutant in field artillery in World War I. In 1919, he was discharged as a captain. Colonel McCormick (editor and publisher of the Chicago Tribune) offered Schmon a job in his Shelter Bay pulpwood operations. Mr. Schmon accepted the challenge of working at this lonely outpost on the lower St. Lawrence River. Schmon was promoted to Woodlands Manager in 1923. In 1930, he became the General Manager. This was expected to be a seasonal operation but the construction of the mill led to the building of a town (Baie Comeau) and its power development. All of this was accomplished under Schmon’s leadership. In 1933, he was elected the President and General Manager of the Ontario Paper Company. He later became the Chairman and Chief Executive Officer. Arthur Schmon made his home in St. Catharines where he played an active role in the community. Schmon was a member of the Founders’ Committee at Brock University and he was a primary force behind the establishment of a University in the Niagara Region. The Brock University Tower is named after him. He also served as Chairman of the St. Catharines Hospital Board of Governors for over 15 years, and was responsible for guiding the hospital through a 3 million dollar expansion program. He was a Governor of Ridley College and an Honorary Governor of McMaster University in Hamilton. Mr. Schmon died of lung cancer on March 18, 1964. He had been named as the St. Catharines’ citizen of the year just one week earlier. Mr. Schmon had 2 sons Robert McCormick Schmon, who was chairman of the Ontario Paper Co. Ltd., St. Catharines, Canada, and the Q.N.S. Paper Co., Baie-Comeau, Canada. He was also director of a Chicago Tribune Co. He died at the age of 61. Another son, Richard R. Schmon, was a second lieutenant in the 313th Field Artillery Battalion, 80th Infantry Division in World War II. He was listed as missing in action on November 5, 1944.
Resumo:
The South West (S.W.) coast of India is blessed with a series of wetland systems popularly referred to as backwaters covering a total area of 46128.94 ha. These backwaters are internationally renowned for their aesthetic and scientific values including being a repository for several species fish and shell fishes. This is more significant in that three wetlands (Vembanad, Sasthamcotta and Ashtamudi) have recently been designated as Ramsar sites of international importance. Thirty major backwaters forming the crux of the coastal wetlands form an abode for over 200 resident or migratory fish and shellfish species. The fishing activities in these water bodies provide the livelihood to about 200,000 fishers and also provide full-time employment to over 50,000 fishermen. This paper describes the changes on the environmental and biodiversity status of selected wetlands, during 1994-2005 period. The pH was generally near neutral to alkaline in range. The salinity values indicated mixohaline condition ranging from 5.20-32.38 ppt. in the 12 wetlands. The productivity values were generally low in most of the wetlands during the study, where the gross production varied from 0.22 gC/m3/day in Kadinamkulam to 1.10 gC/m3/day in the Kayamkulam. The diversity of plankton and benthos was more during the pre-monsoon compared to the monsoon and post-monsoon periods in most of the wetlands. The diversity of plankton and benthos was more during the pre-monsoon compared to the monsoon and post-monsoon periods in most of the wetlands. The average fish yield per ha. varied from 246 kg. in Valapattanam to 2747.3 kg. in Azhikode wetland. Retting of coconut husk in most of the wetlands led to acidic pH conditions with anoxia resulting in the production of high amounts of sulphide, coupled with high carbon dioxide values leading to drastic reduction in the incidence and abundance of plankton, benthic fauna and the fishery resources. The major fish species recorded from the investigation were Etroplus suratensis, E. maculatus, Channa marulius, Labeo dussumieri, Puntius sp. Lutianus argentimaculatus, Mystus sp., Tachysurus sp. and Hemiramphus sp. The majority of these backwaters are highly stressed, especially during the pre monsoon period when the retting activity is at its peak. The study has clearly reflected that a more restrained and cautious approach is needed to manage and preserve the unique backwater ecosystems of South-west India
Diseño de un sistema de benchmarking de prácticas de recursos humanos en redes interorganizacionales
Resumo:
Hoy en día en el mundo empresarial, son cada vez más las compañías que forman parte de redes interorganizacionales, debido a que al hacer parte de estas se genera un apoyo mutuo entre organizaciones sin que ninguna de ellas imponga acciones a realizar sobre la otra (Sulbrandt, Lira, Ibarra, 2001). En años anteriores se han realizado diversas investigaciones acerca de redes interorganizacionales, estudiando factores económicos, financieros y de mercado, pero poco se ha estudiado acerca del campo de recursos humanos y sus prácticas. Es por esto que esta investigación busca describir, explicar, analizar, y comparar, entre otras actividades intelectuales, conceptos de redes interorganizacionales, prácticas de recursos humanos y benchmarking, para finalmente proponer el diseño de un sistema de benchmarking que logre reunir y evaluar las mejores prácticas de recursos humanos de cada empresa dentro de una red interorganizacional.
Who am I? An identity crisis Identity in the new museologies and the role of the museum professional
Resumo:
Whilst the title of this essay suggests more than one “new museology”, it was rather a licence poétique to emphasize the two major theoretical movements that have evolved in the second half of the 20th Century[1]. As a result of the place(s)/contexts where they originated, and for clarity purposes, they have been labelled in this essay as the “Latin new museology” and the “Anglo-Saxon new museology”; however they both identify themselves by just the name of “New Museology”. Even though they both shared similar ideas on participation and inclusion, the language barriers were probably the cause for many ideas not to be fully shared by both groups. The “Latin New museology” was the outcome of a specific context that started in the 1960s (de Varine 1996); being a product of the “Second Museum Revolution”(1970s)[2], it provided new perceptions of heritage, such as “common heritage”. In 1972 ICOM organized the Santiago Round Table, which advocated for museums to engage with the communities they serve, assigning them a role of “problem solvers” within the community (Primo 1999:66). These ideas lead to the concept of the Integral Museum. The Quebec Declaration in 1984 declared that a museum’s aim should be community development and not only “the preservation of past civilisations’ material artefacts”, followed by the Oaxtepec Declaration that claimed for the relationship between territory-heritage-community to be indissoluble (Primo 1999: 69). Finally, in 1992, the Caracas Declaration argued for the museum to “take the responsibility as a social manager reflecting the community’s interests”(Primo 1999: 71). [1] There have been at least three different applications of the term ( Peter van Mensch cited in Mason: 23) [2] According to Santos Primo, this Second Museum Revolution was the result of the Santiago Round Table in Chile, 1972, and furthered by the 1st New Museology International Workshop (Quebec, 1984), Oaxtepec Meeting (Mexico, 1984) and the Caracas Meeting (Venezuela, 1992) (Santos Primo : 63-64)