963 resultados para Neutron irradiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the developments of a neutron tomography setup at the instrument for prompt gamma-ray activation analysis (PGAA) at the Maier-Leibnitz Zentrum(MLZ). The recent developments are driven by the idea of combining the spatial information obtained with neutron tomography with the elemental information determined with PGAA, i.e. to further combine both techniques to an investigative technique called prompt gamma activation imaging (PGAI).At the PGAA instrument, a cold neutron flux of up to 6 x 1010 cm-2 s-1 (thermal equivalent) is available in the focus of an elliptically tapered neutron guide. In the reported experiments, the divergence of the neutron beam was investigated, the resolution of the installed detector system tested, and a proof-of-principle tomography experiment performed. In our study a formerly used camera box was upgraded with a better camera and an optical resolution of 8 line pairs/mm was achieved. The divergence of the neutron beam was measured by a systematic scan along the beam axis. Based on the acquired data, a neutron imaging setup with a L/D ratio of 200 was installed. The resolution of the setup was testedin combination with a gadolinium test target and different scintillator screens. The test target was irradiated at two positions to determine the maximum resolution and the resolution at the actual sample position. The performance of the installed tomography setup was demonstrated bya tomography experiment of an electric amplifier tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim was to develop a delineation guideline for target definition for APBI or boost by consensus of the Breast Working Group of GEC-ESTRO. PROPOSED RECOMMENDATIONS Appropriate delineation of CTV (PTV) with low inter- and intra-observer variability in clinical practice is complex and needs various steps as: (1) Detailed knowledge of primary surgical procedure, of all details of pathology, as well as of preoperative imaging. (2) Definition of tumour localization before breast conserving surgery inside the breast and translation of this information in the postoperative CT imaging data set. (3) Calculation of the size of total safety margins. The size should be at least 2 cm. (4) Definition of the target. (5) Delineation of the target according to defined rules. CONCLUSION Providing guidelines based on the consensus of a group of experts should make it possible to achieve a reproducible and consistent definition of CTV (PTV) for Accelerated Partial Breast Irradiation (APBI) or boost irradiation after breast conserving closed cavity surgery, and helps to define it after selected cases of oncoplastic surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND In a phase 3, randomised, non-inferiority trial, accelerated partial breast irradiation (APBI) for patients with stage 0, I, and IIA breast cancer who underwent breast-conserving treatment was compared with whole-breast irradiation. Here, we present 5-year follow-up results. METHODS We did a phase 3, randomised, non-inferiority trial at 16 hospitals and medical centres in seven European countries. 1184 patients with low-risk invasive and ductal carcinoma in situ treated with breast-conserving surgery were centrally randomised to either whole-breast irradiation or APBI using multicatheter brachytherapy. The primary endpoint was local recurrence. Analysis was done according to treatment received. This trial is registered with ClinicalTrials.gov, number NCT00402519. FINDINGS Between April 20, 2004, and July 30, 2009, 551 patients had whole-breast irradiation with tumour-bed boost and 633 patients received APBI using interstitial multicatheter brachytherapy. At 5-year follow-up, nine patients treated with APBI and five patients receiving whole-breast irradiation had a local recurrence; the cumulative incidence of local recurrence was 1·44% (95% CI 0·51-2·38) with APBI and 0·92% (0·12-1·73) with whole-breast irradiation (difference 0·52%, 95% CI -0·72 to 1·75; p=0·42). No grade 4 late side-effects were reported. The 5-year risk of grade 2-3 late side-effects to the skin was 3·2% with APBI versus 5·7% with whole-breast irradiation (p=0·08), and 5-year risk of grade 2-3 subcutaneous tissue late side-effects was 7·6% versus 6·3% (p=0·53). The risk of severe (grade 3) fibrosis at 5 years was 0·2% with whole-breast irradiation and 0% with APBI (p=0·46). INTERPRETATION The difference between treatments was below the relevance margin of 3 percentage points. Therefore, adjuvant APBI using multicatheter brachytherapy after breast-conserving surgery in patients with early breast cancer is not inferior to adjuvant whole-breast irradiation with respect to 5-year local control, disease-free survival, and overall survival. FUNDING German Cancer Aid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data:  1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An obstacle for establishing the chronology of iron meteorite formation using 182Hf-182W systematics (t1/2 = 8.9 Myr) is to find proper neutron fluence monitors to correct for cosmic ray modification of W isotopic composition. Recent studies showed that siderophile elements such as Pt and Os could serve such a purpose. To test and calibrate these neutron dosimeters, the isotopic compositions of W and Os were measured in a slab of the IID iron meteorite Carbo. This slab has a well-characterized noble gas depth profile reflecting different degrees of shielding to cosmic rays. The results show that W and Os isotopic ratios correlate with distance from the pre-atmospheric center. Negative correlations, barely resolved within error, were found between epsilo190Os-epsilo189Os and epsilo186Os-epsilo189Os with slopes of -0.64 ± 0.45 and -1.8(+1.9/-2.1), respectively. These Os isotope correlations broadly agree with model predictions for capture of secondary neutrons produced by cosmic ray irradiation and results reported previously for other groups of iron meteorites. Correlations were also found between epsilo182W-epsilo189Os (slope = 1.02 ± 0.37) and epsilo182W-epsilo190Os (slope = -1.38 ± 0.58). Intercepts of these two correlations yield pre-exposure epsilo182W values of -3.32 ± 0.51 and -3.62 ± 0.23, respectively (weighted average epsilo182W = -3.57 ± 0.21). This value relies on a large extrapolation leading to a large uncertainty but gives a metal-silicate segregation age of -0.5 ± 2.4 Myr after formation of the solar system. Combining the iron meteorite measurements with simulations of cosmogenic effects in iron meteorites, equations are presented to calculate and correct for cosmogenic effects on 182W using Os isotopes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a period of increasing concern about food safety, food poisoning outbreaks where unpasterurized apple cider or apple juice was found contaminated with Escherichia coli 0157:H7 reinforces the need for using the best technologies in apple cider production. Most apple cider is sold as an unpasteurized raw product. Because of their acidity, it was believed that juice products do not usually contain microorganisms such as E. coli 0157:H7, Salmonella, and Crytosporidium. Yet all of these foodborne pathogens are capable of being transmitted in unpasteurized juices. It is known that these pathogens can survive for several weeks in a variety of acidic juices. Although heat pasteurization is probably the best method to eliminate these pathogens, it is not the most desirable method as it changes sensory properties and also is very costly for small to mid-sized apple cider processors. Pasteurization of apple cider with Ultraviolet Irradiation (UV) is a potential alternative to heat pasteurization. Germicidal W irradiation is effective in inactivating microorganisms without producing undesirable by-products and changing sensory properties. Unpasteurized raw apple cider from a small local processor was purchased for this study. The effects of physical parameters, exposure time and dosage on the W treatment efficacy were examined as well as the effects of the UV light on apple cider quality. W light with principal energy at a wavelength of 254.7 nm, was effective in reducing bacteria (E .coli, ATCC 25922) inoculated apple cider. The W dosage absorbed by the apple cider was mathematically calculated. A radiation dose of 8,777 μW-s/cm2 reduced bacteria an average of 2.20 logs and in multiple passes, the FDA mandated 5-log reduction was achieved. Sensory analysis showed there was no significant difference between the W treated and non-treated cider. Experiments with W treated apple cider indicated a significant (p < 0.01) extension of product shelf life through inhibition of yeast and mold growth. The extension of the researched performed is applicable to other fruit juice processing operations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

External beam radiation therapy is used to treat nearly half of the more than 200,000 new cases of prostate cancer diagnosed in the United States each year. During a radiation therapy treatment, healthy tissues in the path of the therapeutic beam are exposed to high doses. In addition, the whole body is exposed to a low-dose bath of unwanted scatter radiation from the pelvis and leakage radiation from the treatment unit. As a result, survivors of radiation therapy for prostate cancer face an elevated risk of developing a radiogenic second cancer. Recently, proton therapy has been shown to reduce the dose delivered by the therapeutic beam to normal tissues during treatment compared to intensity modulated x-ray therapy (IMXT, the current standard of care). However, the magnitude of stray radiation doses from proton therapy, and their impact on this incidence of radiogenic second cancers, was not known. ^ The risk of a radiogenic second cancer following proton therapy for prostate cancer relative to IMXT was determined for 3 patients of large, median, and small anatomical stature. Doses delivered to healthy tissues from the therapeutic beam were obtained from treatment planning system calculations. Stray doses from IMXT were taken from the literature, while stray doses from proton therapy were simulated using a Monte Carlo model of a passive scattering treatment unit and an anthropomorphic phantom. Baseline risk models were taken from the Biological Effects of Ionizing Radiation VII report. A sensitivity analysis was conducted to characterize the uncertainty of risk calculations to uncertainties in the risk model, the relative biological effectiveness (RBE) of neutrons for carcinogenesis, and inter-patient anatomical variations. ^ The risk projections revealed that proton therapy carries a lower risk for radiogenic second cancer incidence following prostate irradiation compared to IMXT. The sensitivity analysis revealed that the results of the risk analysis depended only weakly on uncertainties in the risk model and inter-patient variations. Second cancer risks were sensitive to changes in the RBE of neutrons. However, the findings of the study were qualitatively consistent for all patient sizes and risk models considered, and for all neutron RBE values less than 100. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The clinical advantage for protons over conventional high-energy x-rays stems from their unique depth-dose distribution, which delivers essentially no dose beyond the end of range. In order to achieve it, accurate localization of the tumor volume relative to the proton beam is necessary. For cases where the tumor moves with respiration, the resultant dose distribution is sensitive to such motion. One way to reduce uncertainty caused by respiratory motion is to use gated beam delivery. The main goal of this dissertation is to evaluate the respiratory gating technique in both passive scattering and scanning delivery mode. Our hypothesis for the study was that optimization of the parameters of synchrotron operation and respiratory gating can lead to greater efficiency and accuracy of respiratory gating for all modes of synchrotron-based proton treatment delivery. The hypothesis is tested in two specific aims. The specific aim #1 is to assess the efficiency of respiratory-gated proton beam delivery and optimize the synchrotron operations for the gated proton therapy. A simulation study was performed and introduced an efficient synchrotron operation pattern, called variable Tcyc. In addition, the simulation study estimated the efficiency in the respiratory gated scanning beam delivery mode as well. The specific aim #2 is to assess the accuracy of beam delivery in respiratory-gated proton therapy. The simulation study was extended to the passive scattering mode to estimate the quality of pulsed beam delivery to the residual motion for several synchrotron operation patterns with the gating technique. The results showed that variable Tcyc operation can offer good reproducible beam delivery to the residual motion at a certain phase of the motion. For respiratory gated scanning beam delivery, the impact of motion on the dose distributions by scanned beams was investigated by measurement. The results showed the threshold for motion for a variety of scan patterns and the proper number of paintings for normal and respiratory gated beam deliveries. The results of specific aims 1 and 2 provided supporting data for implementation of the respiratory gating beam delivery technique into both passive and scanning modes and the validation of the hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In weakly indurated, nannofossil-rich, deep-sea carbonates compressional wave velocity is up to twice as fast parallel to bedding than normal to it. It has been suggested that this anisotropy is due to alignment of calcite c-axes perpendicular to the shields of coccoliths and shield deposition parallel to bedding. This hypothesis was tested by measuring the preferred orientation (fabric) of calcite c-axes in acoustic anisotropic, calcareous DSDP sediment samples by X-ray goniometry, and it was found that the maximum c-axis concentrations are by far too low to explain the anisotropies. The X-ray method is subject to a number of uncertainties due to preparatory and technical shortcomings in weakly indurated rocks. The most serious weaknesses are: sample preparation, volume of measured sample (fraction of a mm3), beam defocusing and background intensity corrections, combination of incomplete pole figures, and necessity of recalculation of the c-axis orientations from other crystallographic directions. Goniometry using thermal neutrons overcomes most of these difficulties, but it is time consuming. We test the interferences made about velocity anisotropy by X-ray studies about the concentration of c-axes in deep-sea carbonates by employing neutron texture goniometry to eight DSDP samples comprising mostly nannofossil material. Fabric and sonic velocity were determined directly on the core specimens, thus from the same rock volume and requiring no preparation. The c-axis orientation is obtained directly from the [0006] calcite diffraction peak without corrections. The fabrics are clearly defined, but weak (1.1 to 1.86 times uniform) with the maximum about normal to bedding. They have crudely orthorhombic symmetry, but are not axisymmetric around the bedding normal. The observed c-axis intensities, although higher than determined by the X-ray method on other samples, are by far too low to explain the observed acoustic anisotropies.