982 resultados para Neural tube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four types of neural networks which have previously been established for speech recognition and tested on a small, seven-speaker, 100-sentence database are applied to the TIMIT database. The networks are a recurrent network phoneme recognizer, a modified Kanerva model morph recognizer, a compositional representation phoneme-to-word recognizer, and a modified Kanerva model morph-to-word recognizer. The major result is for the recurrent net, giving a phoneme recognition accuracy of 57% from the si and sx sentences. The Kanerva morph recognizer achieves 66.2% accuracy for a small subset of the sa and sx sentences. The results for the word recognizers are incomplete.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian formulated neural networks are implemented using hybrid Monte Carlo method for probabilistic fault identification in cylindrical shells. Each of the 20 nominally identical cylindrical shells is divided into three substructures. Holes of (12±2) mm in diameter are introduced in each of the substructures and vibration data are measured. Modal properties and the Coordinate Modal Assurance Criterion (COMAC) are utilized to train the two modal-property-neural-networks. These COMAC are calculated by taking the natural-frequency-vector to be an additional mode. Modal energies are calculated by determining the integrals of the real and imaginary components of the frequency response functions over bandwidths of 12% of the natural frequencies. The modal energies and the Coordinate Modal Energy Assurance Criterion (COMEAC) are used to train the two frequency-response-function-neural-networks. The averages of the two sets of trained-networks (COMAC and COMEAC as well as modal properties and modal energies) form two committees of networks. The COMEAC and the COMAC are found to be better identification data than using modal properties and modal energies directly. The committee approach is observed to give lower standard deviations than the individual methods. The main advantage of the Bayesian formulation is that it gives identities of damage and their respective confidence intervals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we derive an EM algorithm for nonlinear state space models. We use it to estimate jointly the neural network weights, the model uncertainty and the noise in the data. In the E-step we apply a forwardbackward Rauch-Tung-Striebel smoother to compute the network weights. For the M-step, we derive expressions to compute the model uncertainty and the measurement noise. We find that the method is intrinsically very powerful, simple and stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zinc oxide is a versatile II-VI naturally n-type semiconductor that exhibits piezoelectric properties. By controlling the growth kinetics during a simple carbothermal reduction process a wide range of 1D nanostructures such as nanowires, nanobelts, and nanotetrapods have been synthesized. The driving force: for the nanostructure growth is the Zn vapour supersaturation and supply rate which, if known, can be used to predict and explain the type of crystal structure that results. A model which attempts to determine the Zn vapour concentration as a function of position in the growth furnace is described. A numerical simulation package, COMSOL, was used to simultaneously model the effects of fluid flow, diffusion and heat transfer in a tube furnace made specifically for ZnO nanostructure growth. Parameters such as the temperature, pressure, and flow rate are used as inputs to the model to show the effect that each one has on the Zn concentration profile. An experimental parametric study of ZnO nanostructure growth was also conducted and compared to the model predictions for the Zn concentration in the tube. © 2008 Materials Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we examine triggering in a simple linearly-stable thermoacoustic system using techniques from flow instability and optimal control. Firstly, for a noiseless system, we find the initial states that have highest energy growth over given times and from given energies. Secondly, by varying the initial energy, we find the lowest energy that just triggers to a stable periodic solution. We show that the corresponding initial state grows first towards an unstable periodic solution and, from there, to the stable periodic solution. This exploits linear transient growth, which arises due to nonnormality in the governing equations and is directly analogous to bypass transition to turbulence. Thirdly, we introduce noise that has similar spectral characteristics to this initial state. We show that, when triggering from low noise levels, the system grows to high amplitude self-sustained oscillations by first growing towards the unstable periodic solution of the noiseless system. This helps to explain the experimental observation that linearly-stable systems can trigger to self-sustained oscillations even with low background noise. © 2010 by University of Cambridge. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces current work in collating data from different projects using soil mix technology and establishing trends using artificial neural networks (ANNs). Variation in unconfined compressive strength as a function of selected soil mix variables (e.g., initial soil water content and binder dosage) is observed through the data compiled from completed and on-going soil mixing projects around the world. The potential and feasibility of ANNs in developing predictive models, which take into account a large number of variables, is discussed. The main objective of the work is the management and effective utilization of salient variables and the development of predictive models useful for soil mix technology design. Based on the observed success in the predictions made, this paper suggests that neural network analysis for the prediction of properties of soil mix systems is feasible. © ASCE 2011.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This theoretical paper examines a non-normal and non-linear model of a horizontal Rijke tube. Linear and non-linear optimal initial states, which maximize acoustic energy growth over a given time from a given energy, are calculated. It is found that non-linearity and non-normality both contribute to transient growth and that, for this model, linear optimal states are only a good predictor of non-linear optimal states for low initial energies. Two types of non-linear optimal initial state are found. The first has strong energy growth during the first period of the fundamental mode but loses energy thereafter. The second has weaker energy growth during the first period but retains high energy for longer. The second type causes triggering to self-sustained oscillations from lower energy than the first and has higher energy in the fundamental mode. This suggests, for instance, that low frequency noise will be more effective at causing triggering than high frequency noise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulation of neuronal gene expression is critical to nervous system development. REST (RE1-silencing transcription factor) regulates neuronal gene expression through interacting with a group of corepressor proteins including REST corepressors (RCOR). Here we show that Xenopus RCOR2 is predominantly expressed in the developing nervous system. Through a yeast two-hybrid screen, we isolated Xenopus ZMYND8 (Zinc finger and MYND domain containing 8) as an XRCOR2 interacting factor. XRCOR2 and XZMYND8 bind each other in co-immunoprecipitation assays and both of them can function as transcriptional repressors. XZMYND8 is co-expressed with XRCOR2 in the nervous system and overexpression of XZMYND8 inhibits neural differentiation in Xenopus embryos. These data reveal a RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-based therapies using embryonic stem cells (ESCs) in the treatment of neural disease will require the generation of homogenous donor neural progenitor (NP) populations. Here we describe an efficient culture system containing hepatocyte growth factor (HGF) and G5 supplement for the production of highly enriched (88.3% +/- 8.1%)populations of NPs from rhesus monkey ESCs. Additional purification resulted in NP preparations that were 98% nestin positive. Moreover, NPs, as monolayers or neurospheres, could be maintained for prolonged periods of time in media containing HGF+G5 or G5 alone. In vitro differentiation and in vivo transplantation assays showed that NPs could differentiate into neurons, astrocytes, and oligodendrocytes. The kinds and quantities of differentiated cells derived from NPs were closely correlated with their niches in vivo. Glial differentiation was predominant in periventricular areas, whereas cells migrating into the cortex were mostly neurons. Cell counts showed that 2 months after transplantation, approximately 25% of transplanted NPs survived and 65% - 80% of the surviving transplanted cells migrated along the ventricular wall or in a radial fashion. Subcloning demonstrated that several clonal lines derived from NPs expressed nestin and differentiated into three neural lineages in vitro and in rat brains in vivo. In contrast, some subcloned lines showed restricted differentiation both in vitro and in vivo in rat brains. These observations set the stage for obtaining highly enriched NPs and evaluating the efficacy of NP-based transplantation therapy in the nonhuman primate and will provide a platform for probing the molecular mechanisms that control neural induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple monoculture system. combined with a chemically defined medium containing hepatocyte growth factor (HGF) and G5 supplement, was used to induce rhesus monkey embryonic stem cells (rESC) directly into neuroepithelial (NE) cells. Under these conditio