887 resultados para Nerve Net


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we present an economical and versatile platform for developing motor control and sensory feedback of a prosthetic hand via in vitro mammalian peripheral nerve activity. In this study, closed-loop control of the grasp function of the prosthetic hand was achieved by stimulation of a peripheral nerve preparation in response to slip sensor data from a robotic hand, forming a rudimentary reflex action. The single degree of freedom grasp was triggered by single unit activity from motor and sensory fibers as a result of stimulation. The work presented here provides a novel, reproducible, economic, and robust platform for experimenting with neural control of prosthetic devices before attempting in vivo implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A working report for the Department of Agriculture and Fisheries, Scotland, Marine Laboratory Aberdeen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose an efficient two-level model identification method for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularization parameters in the elastic net are optimized using a particle swarm optimization (PSO) algorithm at the upper level by minimizing the leave one out (LOO) mean square error (LOOMSE). Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An alteration of species composition in temperate forests – both managed and natural - is one of the expected effects of environmental change. Present forest tree species ranges will be altered by changing environmental conditions. By a combination of continuous and destructive sampling, we compared biomass stocks and annual NPP in naturally regenerated stands of Norway spruce and European beech. We purposely selected a site where future environmental conditions are predicted to favour beech over presently dominant spruce. We found no difference in overall productivity, but biomass allocation differed significantly between the two species. Beech allocated more assimilates to stem and roots than spruce. There was no significant difference between the species in NPP of the fast turnover biomass pool comprising foliage and fine roots. Maximum height growth occurred about a month earlier than in spruce, potentially changing the timing of carbon (C) flow into the soil pools. We show that the replacement of spruce by beech will result in changes in forest biomass allocation and in alterations of belowground C cycle. Such changes will affect forest ecosystem function by modifying the magnitude and timing of certain C fluxes, but also by potentially changing the species composition of forest biota dependent on them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-stage linear-in-the-parameter model construction algorithm is proposed aimed at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage which constructs a sparse linear-in-the-parameter classifier. The prefiltering stage is a two-level process aimed at maximizing a model's generalization capability, in which a new elastic-net model identification algorithm using singular value decomposition is employed at the lower level, and then, two regularization parameters are optimized using a particle-swarm-optimization algorithm at the upper level by minimizing the leave-one-out (LOO) misclassification rate. It is shown that the LOO misclassification rate based on the resultant prefiltered signal can be analytically computed without splitting the data set, and the associated computational cost is minimal due to orthogonality. The second stage of sparse classifier construction is based on orthogonal forward regression with the D-optimality algorithm. Extensive simulations of this approach for noisy data sets illustrate the competitiveness of this approach to classification of noisy data problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuroprostheses interfaced with transected peripheral nerves are technological routes to control robotic limbs as well as convey sensory feedback to patients suffering from traumatic neural injuries or degenerative diseases. To maximize the wealth of data obtained in recordings, interfacing devices are required to have intrafascicular resolution and provide high signal-to-noise ratio (SNR) recordings. In this paper, we focus on a possible building block of a three-dimensional regenerative implant: a polydimethylsiloxane (PDMS) microchannel electrode capable of highly sensitive recordings in vivo. The PDMS 'micro-cuff' consists of a 3.5 mm long (100 µm × 70 µm cross section) microfluidic channel equipped with five evaporated Ti/Au/Ti electrodes of sub-100 nm thickness. Individual electrodes have average impedance of 640 ± 30 kΩ with a phase angle of −58 ± 1 degrees at 1 kHz and survive demanding mechanical handling such as twisting and bending. In proof-of-principle acute implantation experiments in rats, surgically teased afferent nerve strands from the L5 dorsal root were threaded through the microchannel. Tactile stimulation of the skin was reliably monitored with the three inner electrodes in the device, simultaneously recording signal amplitudes of up to 50 µV under saline immersion. The overall SNR was approximately 4. A small but consistent time lag between the signals arriving at the three electrodes was observed and yields a fibre conduction velocity of 30 m s−1. The fidelity of the recordings was verified by placing the same nerve strand in oil and recording activity with hook electrodes. Our results show that PDMS microchannel electrodes open a promising technological path to 3D regenerative interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have fabricated a compliant neural interface to record afferent nerve activity. Stretchable gold electrodes were evaporated on a polydimethylsiloxane (PDMS) substrate and were encapsulated using photo-patternable PDMS. The built-in microstructure of the gold film on PDMS allows the electrodes to twist and flex repeatedly, without loss of electrical conductivity. PDMS microchannels (5mm long, 100μm wide, 100μm deep) were then plasma bonded irreversibly on top of the electrode array to define five parallel-conduit implants. The soft gold microelectrodes have a low impedance of ~200kΩ at the 1kHz frequency range. Teased nerves from the L6 dorsal root of an anaesthetized Sprague Dawley rat were threaded through the microchannels. Acute tripolar recordings of cutaneous activity are demonstrated, from multiple nerve rootlets simultaneously. Confinement of the axons within narrow microchannels allows for reliable recordings of low amplitude afferents. This electrode technology promises exciting applications in neuroprosthetic devices including bladder fullness monitors and peripheral nervous system implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel two-stage construction algorithm for linear-in-the-parameters classifier is proposed, aiming at noisy two-class classification problems. The purpose of the first stage is to produce a prefiltered signal that is used as the desired output for the second stage to construct a sparse linear-in-the-parameters classifier. For the first stage learning of generating the prefiltered signal, a two-level algorithm is introduced to maximise the model's generalisation capability, in which an elastic net model identification algorithm using singular value decomposition is employed at the lower level while the two regularisation parameters are selected by maximising the Bayesian evidence using a particle swarm optimization algorithm. Analysis is provided to demonstrate how “Occam's razor” is embodied in this approach. The second stage of sparse classifier construction is based on an orthogonal forward regression with the D-optimality algorithm. Extensive experimental results demonstrate that the proposed approach is effective and yields competitive results for noisy data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Observations of net ecosystem exchange (NEE) of carbon and its biophysical drivers have been collected at the AmeriFlux site in the Morgan-Monroe State Forest (MMSF) in Indiana, USA since 1998. Thus, this is one of the few deciduous forest sites in the world, where a decadal analysis on net ecosystem productivity (NEP) trends is possible. Despite the large interannual variability in NEP, the observations show a significant increase in forest productivity over the past 10 years (by an annual increment of about 10 g C m−2 yr−1). There is evidence that this trend can be explained by longer vegetative seasons, caused by extension of the vegetative activity in the fall. Both phenological and flux observations indicate that the vegetative season extended later in the fall with an increase in length of about 3 days yr−1 for the past 10 years. However, these changes are responsible for only 50% of the total annual gain in forest productivity in the past decade. A negative trend in air and soil temperature during the winter months may explain an equivalent increase in NEP through a decrease in ecosystem respiration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient two-level model identification method aiming at maximising a model׳s generalisation capability is proposed for a large class of linear-in-the-parameters models from the observational data. A new elastic net orthogonal forward regression (ENOFR) algorithm is employed at the lower level to carry out simultaneous model selection and elastic net parameter estimation. The two regularisation parameters in the elastic net are optimised using a particle swarm optimisation (PSO) algorithm at the upper level by minimising the leave one out (LOO) mean square error (LOOMSE). There are two elements of original contributions. Firstly an elastic net cost function is defined and applied based on orthogonal decomposition, which facilitates the automatic model structure selection process with no need of using a predetermined error tolerance to terminate the forward selection process. Secondly it is shown that the LOOMSE based on the resultant ENOFR models can be analytically computed without actually splitting the data set, and the associate computation cost is small due to the ENOFR procedure. Consequently a fully automated procedure is achieved without resort to any other validation data set for iterative model evaluation. Illustrative examples are included to demonstrate the effectiveness of the new approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining satellite data, atmospheric reanalyses and climate model simulations, variability in the net downward radiative flux imbalance at the top of Earth's atmosphere (N) is reconstructed and linked to recent climate change. Over the 1985-1999 period mean N (0.34 ± 0.67 Wm–2) is lower than for the 2000-2012 period (0.62 ± 0.43 Wm–2, uncertainties at 90% confidence level) despite the slower rate of surface temperature rise since 2000. While the precise magnitude of N remains uncertain, the reconstruction captures interannual variability which is dominated by the eruption of Mt. Pinatubo in 1991 and the El Niño Southern Oscillation. Monthly deseasonalized interannual variability in N generated by an ensemble of 9 climate model simulations using prescribed sea surface temperature and radiative forcings and from the satellite-based reconstruction is significantly correlated (r ∼ 0.6) over the 1985-2012 period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Users’ requirements change drives an information system evolution. Consequently, such evolution affects those atomic services which provide functional operations from one state of their composition to another state of composition. A challenging issue associated with such evolution of the state of service composition is to ensure a resultant service composition remaining rational. This paper presents a method of Service Composition Atomic-Operation Set (SCAOS). SCAOS defines 2 classes of atomic operations and 13 kinds of basic service compositions to aid a state change process by using Workflow Net. The workflow net has algorithmic capabilities to compose the required services with rationality and maintain any changes to the services in a different composition also rational. This method can improve the adaptability to the ever changing business requirements of information systems in the dynamic environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schwann cells (SCs) are the supporting cells of the peripheral nervous system and originate from the neural crest. They play a unique role in the regeneration of injured peripheral nerves and have themselves a highly unstable phenotype as demonstrated by their unexpectedly broad differentiation potential. Thus, SCs can be considered as dormant, multipotent neural crest-derived progenitors or stem cells. Upon injury they de-differentiate via cellular reprogramming, re-enter the cell cycle and participate in the regeneration of the nerve. Here we describe a protocol for efficient generation of neurospheres from intact adult rat and murine sciatic nerve without the need of experimental in vivo pre-degeneration of the nerve prior to Schwann cell isolation. After isolation and removal of the connective tissue, the nerves are initially plated on poly-D-lysine coated cell culture plates followed by migration of the cells up to 80% confluence and a subsequent switch to serum-free medium leading to formation of multipotent neurospheres. In this context, migration of SCs from the isolated nerve, followed by serum-free cultivation of isolated SCs as neurospheres mimics the injury and reprograms fully differentiated SCs into a multipotent, neural crest-derived stem cell phenotype. This protocol allows reproducible generation of multipotent Schwann cell-derived neurospheres from sciatic nerve through cellular reprogramming by culture, potentially marking a starting point for future detailed investigations of the de-differentiation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We utilized an ecosystem process model (SIPNET, simplified photosynthesis and evapotranspiration model) to estimate carbon fluxes of gross primary productivity and total ecosystem respiration of a high-elevation coniferous forest. The data assimilation routine incorporated aggregated twice-daily measurements of the net ecosystem exchange of CO2 (NEE) and satellite-based reflectance measurements of the fraction of absorbed photosynthetically active radiation (fAPAR) on an eight-day timescale. From these data we conducted a data assimilation experiment with fifteen different combinations of available data using twice-daily NEE, aggregated annual NEE, eight-day f AP AR, and average annual fAPAR. Model parameters were conditioned on three years of NEE and fAPAR data and results were evaluated to determine the information content from the different combinations of data streams. Across the data assimilation experiments conducted, model selection metrics such as the Bayesian Information Criterion and Deviance Information Criterion obtained minimum values when assimilating average annual fAPAR and twice-daily NEE data. Application of wavelet coherence analyses showed higher correlations between measured and modeled fAPAR on longer timescales ranging from 9 to 12 months. There were strong correlations between measured and modeled NEE (R2, coefficient of determination, 0.86), but correlations between measured and modeled eight-day fAPAR were quite poor (R2 = −0.94). We conclude that this inability to determine fAPAR on eight-day timescale would improve with the considerations of the radiative transfer through the plant canopy. Modeled fluxes when assimilating average annual fAPAR and annual NEE were comparable to corresponding results when assimilating twice-daily NEE, albeit at a greater uncertainty. Our results support the conclusion that for this coniferous forest twice-daily NEE data are a critical measurement stream for the data assimilation. The results from this modeling exercise indicate that for this coniferous forest, average annuals for satellite-based fAPAR measurements paired with annual NEE estimates may provide spatial detail to components of ecosystem carbon fluxes in proximity of eddy covariance towers. Inclusion of other independent data streams in the assimilation will also reduce uncertainty on modeled values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two methods are developed to estimate net surface energy fluxes based upon satellite-based reconstructions of radiative fluxes at the top of atmosphere and the atmospheric energy tendencies and transports from the ERA-Interim reanalysis. Method 1 applies the mass adjusted energy divergence from ERA-Interim while method 2 estimates energy divergence based upon the net energy difference at the top of atmosphere and the surface from ERA-Interim. To optimise the surface flux and its variability over ocean, the divergences over land are constrained to match the monthly area mean surface net energy flux variability derived from a simple relationship between the surface net energy flux and the surface temperature change. The energy divergences over the oceans are then adjusted to remove an unphysical residual global mean atmospheric energy divergence. The estimated net surface energy fluxes are compared with other data sets from reanalysis and atmospheric model simulations. The spatial correlation coefficients of multi-annual means between the estimations made here and other data sets are all around 0.9. There are good agreements in area mean anomaly variability over the global ocean, but discrepancies in the trend over the eastern Pacific are apparent.