970 resultados para Navier-Stokes-Smoluchowski
Resumo:
本文用W.H.Hui提出的方法,在半物理平面内重新表述了Stokes波的数学模型和边界条件,提出了两种更有效的数值计算方法来获得Stokes波高阶谐波系数,并可递推至无穷。通过小参数转换,重新得到了Cokelet(1977)的波速和半波高的摄动展开式。
Resumo:
<正> Stokes流,或称零雷诺数流,指的是尺寸微小、速度缓慢的流动。它的理论在化工、生物力学、物理化学、环境保护、选矿、地球物理和气象科学等各个领域都有重要的应用。 零雷诺数流可用Stokes方程来描述:式中μ,V和P分别是流体的粘度、速度向量和压力。直到本世纪60年代,只有数目非常有
Resumo:
The coherent anti-Stokes Raman scattering (CARS) microscope with the combination of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labelling. CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscope. In this paper, the intensity distribution and the polarization property of the optical field near the focus was calculated. By using the Green function, the precise analytic solution to the wave equation of a Hertzian dipole source was obtained. We found that the intensity distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscope (e.g. the point spread function) will fail to describe the imaging properties of the CARS microscope.
The intensity distributions of collected signals in coherent anti-Stokes Raman scattering microscopy
Resumo:
Coherent anti-Stokes Raman scattering (CARS) microscopy with the combining of confocal and CARS techniques is a remarkable alternative for imaging chemical or biological specimens that neither fluoresce nor tolerate labeling. The CARS is a nonlinear optical process, the imaging properties of CARS microscopy will be very different from the conventional confocal microscopy. In this paper, we calculated the propagation of CARS signals by using the wave equation in medium and the slowly varying envelope approximation (SVEA), and find that the intensity angular distributions vary considerably with the different experimental configurations and the different specimen shapes. So the conventional description of microscopy (e.g.. the point spread function) will fail to descript the imaging properties of CARS microscopy. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Part I
The slow, viscous flow past a thin screen is analyzed based on Stokes equations. The problem is reduced to an associated electric potential problem as introduced by Roscoe. Alternatively, the problem is formulated in terms of a Stokeslet distribution, which turns out to be equivalent to the first approach.
Special interest is directed towards the solution of the Stokes flow past a circular annulus. A "Stokeslet" formulation is used in this analysis. The problem is finally reduced to solving a Fredholm integral equation of the second kind. Numerical data for the drag coefficient and the mean velocity through the hole of the annulus are obtained.
Stokes flow past a circular screen with numerous holes is also attempted by assuming a set of approximate boundary conditions. An "electric potential" formulation is used, and the problem is also reduced to solving a Fredholm integral equation of the second kind. Drag coefficient and mean velocity through the screen are computed.
Part II
The purpose of this investigation is to formulate correctly a set of boundary conditions to be prescribed at the interface between a viscous flow region and a porous medium so that the problem of a viscous flow past a porous body can be solved.
General macroscopic equations of motion for flow through porous media are first derived by averaging Stokes equations over a volume element of the medium. These equations, including viscous stresses for the description, are more general than Darcy's law. They reduce to Darcy's law when the Darcy number becomes extremely small.
The interface boundary conditions of the first kind are then formulated with respect to the general macroscopic equations applied within the porous region. An application of such equations and boundary conditions to a Poiseuille shear flow problem demonstrates that there usually exists a thin interface layer immediately inside the porous medium in which the tangential velocity varies exponentially and Darcy's law does not apply.
With Darcy's law assumed within the porous region, interface boundary conditions of the second kind are established which relate the flow variables across the interface layer. The primary feature is a jump condition on the tangential velocity, which is found to be directly proportional to the normal gradient of the tangential velocity immediately outside the porous medium. This is in agreement with the experimental results of Beavers, et al.
The derived boundary conditions are applied in the solutions of two other problems: (1) Viscous flow between a rotating solid cylinder and a stationary porous cylinder, and (2) Stokes flow past a porous sphere.
Resumo:
Low temperature (10 K) strong anti-Stokes photoluminescence (ASPL) of ZnO microcrystal excited by low power cw 532 nm laser is reported here. Energy upconversion of 1.1 eV is obtained in our experiment with no conventional nonlinear effect. Through the study of the normal photoluminescence and temperature dependence of ASPL we conclude that the green band luminescence in ZnO is related to deep donor to valance band transition. Using the two-step two-photon absorption model, we provide a plausible mechanism leading to the ASPL phenomenon in our experiment. (c) 2006 American Institute of Physics.
Resumo:
The covalency of each bond in divalent europium doped hosts CaSiO3, SrSiO3, BaSiO3, Sr2LiSiO4F, Ba5SiO4Cl6 and Ba5SiO4Br6 were calculated by using the complicate crystal chemical bond theory. The relationship between the Stokes shift and the bond properties of Eu2+ in these crystals was discussed. The result demonstrates that, in the isostructural crystals that being doped with Eu2+, there is a more precise connection between the magnitude of Stokes shift and the mean covalency of the dopant site.
Resumo:
Interfacial internal waves in a three-layer density-stratified fluid are investigated using a singular method, and third-order asymptotic solutions of the velocity potentials and third-order Stokes wave solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. as expected, the third-order solutions describe the third-order nonlinear modification and the third-order nonlinear interactions between the interfacial waves. The wave velocity depends on not only the wave number and the depth of each layer but also on the wave amplitude.
Resumo:
In this paper, internal waves in three-layer stratified fluid are investigated by using a perturbation method, and the second-order asymptotic solutions of the velocity potentials and the second-order Stokes solutions of the associated elevations of the interfacial waves are presented based on the small amplitude wave theory. As expected, the first-order solutions are consistent with ordinary linear theoretical results, and the second-order solutions describe the second-order modification on the linear theory and the interactions between the two interfacial waves. Both the first-order and second-order solutions derived depend on the depths and densities of the three-layer fluid. It is also noted that the solutions obtained from the present work include the theoretical results derived by Umeyama as special cases.