965 resultados para Natural language processing (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi anni, il natural language processing ha subito una forte evoluzione, principalmente dettata dai paralleli avanzamenti nell’area del deep-learning. Con dimensioni architetturali in crescita esponenziale e corpora di addestramento sempre più comprensivi, i modelli neurali sono attualmente in grado di generare testo in maniera indistinguibile da quello umano. Tuttavia, a predizioni accurate su task complessi, si contrappongono metriche frequentemente arretrate, non capaci di cogliere le sfumature semantiche o le dimensioni di valutazione richieste. Tale divario motiva ancora oggi l’adozione di una valutazione umana come metodologia standard, ma la natura pervasiva del testo sul Web rende evidente il bisogno di sistemi automatici, scalabili, ed efficienti sia sul piano dei tempi che dei costi. In questa tesi si propone un’analisi delle principali metriche allo stato dell’arte per la valutazione di modelli pre-addestrati, partendo da quelle più popolari come Rouge fino ad arrivare a quelle che a loro volta sfruttano modelli per valutare il testo. Inoltre, si introduce una nuova libreria – denominata Blanche– finalizzata a raccogliere in un unico ambiente le implementazioni dei principali contributi oggi disponibili, agevolando il loro utilizzo da parte di sviluppatori e ricercatori. Infine, si applica Blanche per una valutazione ad ampio spettro dei risultati generativi ottenuti all’interno di un reale caso di studio, incentrato sulla verbalizzazione di eventi biomedici espressi nella letteratura scientifica. Una particolare attenzione è rivolta alla gestione dell’astrattività, un aspetto sempre più cruciale e sfidante sul piano valutativo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Questa tesi di laurea compie uno studio sull’ utilizzo di tecniche di web crawling, web scraping e Natural Language Processing per costruire automaticamente un dataset di documenti e una knowledge base di coppie verbo-oggetto utilizzabile per la classificazione di testi. Dopo una breve introduzione sulle tecniche utilizzate verrà presentato il metodo di generazione, prima in forma teorica e generalizzabile a qualunque classificazione basata su un insieme di argomenti, e poi in modo specifico attraverso un caso di studio: il software SDG Detector. In particolare quest ultimo riguarda l’applicazione pratica del metodo esposto per costruire una raccolta di informazioni utili alla classificazione di documenti in base alla presenza di uno o più Sustainable Development Goals. La parte relativa alla classificazione è curata dal co-autore di questa applicazione, la presente invece si concentra su un’analisi di correttezza e performance basata sull’espansione del dataset e della derivante base di conoscenza.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

State-of-the-art NLP systems are generally based on the assumption that the underlying models are provided with vast datasets to train on. However, especially when working in multi-lingual contexts, datasets are often scarce, thus more research should be carried out in this field. This thesis investigates the benefits of introducing an additional training step when fine-tuning NLP models, named Intermediate Training, which could be exploited to augment the data used for the training phase. The Intermediate Training step is applied by training models on NLP tasks that are not strictly related to the target task, aiming to verify if the models are able to leverage the learned knowledge of such tasks. Furthermore, in order to better analyze the synergies between different categories of NLP tasks, experimentations have been extended also to Multi-Task Training, in which the model is trained on multiple tasks at the same time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'avanzamento nel campo della long document summarization dipende interamente dalla disponibilità di dataset pubblici di alta qualità e con testi di lunghezza considerevole. Risulta pertanto problematico il fatto che tali dataset risultino spesso solo in lingua inglese, comportandone una limitazione notevole se ci si rivolge a linguaggi le cui risorse sono limitate. A tal scopo, si propone LAWSU-IT, un nuovo dataset giudiziario per long document summarization italiana. LAWSU-IT è il primo dataset italiano di summarization ad avere documenti di grandi dimensioni e a trattare il dominio giudiziario, ed è stato costruito attuando procedure di cleaning dei dati e selezione mirata delle istanze, con lo scopo di ottenere un dataset di long document summarization di alta qualità. Inoltre, sono proposte molteplici baseline sperimentali di natura estrattiva e astrattiva con modelli stato dell'arte e approcci di segmentazione del testo. Si spera che tale risultato possa portare a ulteriori ricerche e sviluppi nell'ambito della long document summarization italiana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural Language Processing has always been one of the most popular topics in Artificial Intelligence. Argument-related research in NLP, such as argument detection, argument mining and argument generation, has been popular, especially in recent years. In our daily lives, we use arguments to express ourselves. The quality of arguments heavily impacts the effectiveness of our communications with others. In professional fields, such as legislation and academic areas, arguments of good quality play an even more critical role. Therefore, argument generation with good quality is a challenging research task that is also of great importance in NLP. The aim of this work is to investigate the automatic generation of arguments with good quality, according to the given topic, stance and aspect (control codes). To achieve this goal, a module based on BERT [17] which could judge an argument's quality is constructed. This module is used to assess the quality of the generated arguments. Another module based on GPT-2 [19] is implemented to generate arguments. Stances and aspects are also used as guidance when generating arguments. After combining all these models and techniques, the ranks of the generated arguments could be acquired to evaluate the final performance. This dissertation describes the architecture and experimental setup, analyzes the results of our experimentation, and discusses future directions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SmartPantry `e un applicazione per Android che si pone come obiettivo quello di rendere semplice e pratica la gestione virtuale delle dispense degli utenti. Oltre a questo implementa un recommender system dedicato al suggerimento di ricette adatte ai prodotti contenuti nella dispensa, per farlo l’algoritmo si avvale della distanza di Damerau-Levenshtein per eseguire Natural Language Processing in modo tale da interpretare gli ingredienti delle dispense degli utenti e poterli mappare ad una collezione di ingredienti mantenuti in un database remoto. All’interno di questo elaborato andremo ad analizzare i dettagli di progetta�zione ed implementativi di SmartPantry e degli algoritmi che la sostengono ponendo particolare attenzione agli aspetti qualitativi degli algoritmi di NLP e raccomandazione raccogliendo dati sufficienti a trarre conclusioni oggettive sulla precisione ed efficacia dei suddetti. Nell’ultimo capitolo vedremo come nonostante la presenza di margini di miglioramento, come versione 1.0, gli algoritmi abbiano restituito dei risultati pi`u che discreti

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sempre più negli ultimi anni si interagisce con i chatbot, software che simulano una conversazione con un essere umano utilizzando il linguaggio naturale. L’elaborato di tesi mira ad uno studio più approfondito della tematica, a partire da come tale tecnologia si è evoluta nel corso degli anni. Si procede analizzando le principali applicazioni dei bot, soffermandosi anche sui cambiamenti apportati dalla pandemia di Covid-19, ed evidenziando le principali ragioni che portano aziende e singoli al loro utilizzo. Inoltre, vengono descritti i diversi tipi di bot esistenti e viene analizzato il Natural Language Processing, ramo dell’Intelligenza Artificiale che mira alla comprensione del linguaggio naturale. Nei capitoli successivi viene descritto il progetto CartBot, un’applicazione di chat mobile per l’e-grocery, implementata come un chatbot che guida il cliente all’acquisto della spesa online. Vengono descritte le tecnologie utilizzate, con particolare riferimento al software di Google Dialogflow, che permette di sviluppare bot; inoltre viene analizzata come è stata effettuata la progettazione, sia lato front-end che back-end, allegando il flowchart, un diagramma di flusso realizzato per definire la sequenza di azioni e passaggi richiesti dal bot per effettuare l’acquisto. Infine, sono descritte le varie sottosezioni di CartBot, che riguardano la visualizzazione dei prodotti e il completamento dell’ordine, allegando screenshot dell’interfaccia finale ottenuta e inserendo il codice di alcune funzioni rilevanti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advent of high-performance computing devices, deep neural networks have gained a lot of popularity in solving many Natural Language Processing tasks. However, they are also vulnerable to adversarial attacks, which are able to modify the input text in order to mislead the target model. Adversarial attacks are a serious threat to the security of deep neural networks, and they can be used to craft adversarial examples that steer the model towards a wrong decision. In this dissertation, we propose SynBA, a novel contextualized synonym-based adversarial attack for text classification. SynBA is based on the idea of replacing words in the input text with their synonyms, which are selected according to the context of the sentence. We show that SynBA successfully generates adversarial examples that are able to fool the target model with a high success rate. We demonstrate three advantages of this proposed approach: (1) effective - it outperforms state-of-the-art attacks by semantic similarity and perturbation rate, (2) utility-preserving - it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient - it performs attacks faster than other methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo elaborato viene trattata l’analisi del problema di soft labeling applicato alla multi-document summarization, in particolare vengono testate varie tecniche per estrarre frasi rilevanti dai documenti presi in dettaglio, al fine di fornire al modello di summarization quelle di maggior rilievo e più informative per il riassunto da generare. Questo problema nasce per far fronte ai limiti che presentano i modelli di summarization attualmente a disposizione, che possono processare un numero limitato di frasi; sorge quindi la necessità di filtrare le informazioni più rilevanti quando il lavoro si applica a documenti lunghi. Al fine di scandire la metrica di importanza, vengono presi come riferimento metodi sintattici, semantici e basati su rappresentazione a grafi AMR. Il dataset preso come riferimento è Multi-LexSum, che include tre granularità di summarization di testi legali. L’analisi in questione si compone quindi della fase di estrazione delle frasi dai documenti, della misurazione delle metriche stabilite e del passaggio al modello stato dell’arte PRIMERA per l’elaborazione del riassunto. Il testo ottenuto viene poi confrontato con il riassunto target già fornito, considerato come ottimale; lavorando in queste condizioni l’obiettivo è di definire soglie ottimali di upper-bound per l’accuratezza delle metriche, che potrebbero ampliare il lavoro ad analisi più dettagliate qualora queste superino lo stato dell’arte attuale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we address a multi-label hierarchical text classification problem in a low-resource setting and explore different approaches to identify the best one for our case. The goal is to train a model that classifies English school exercises according to a hierarchical taxonomy with few labeled data. The experiments made in this work employ different machine learning models and text representation techniques: CatBoost with tf-idf features, classifiers based on pre-trained models (mBERT, LASER), and SetFit, a framework for few-shot text classification. SetFit proved to be the most promising approach, achieving better performance when during training only a few labeled examples per class are available. However, this thesis does not consider all the hierarchical taxonomy, but only the first two levels: to address classification with the classes at the third level further experiments should be carried out, exploring methods for zero-shot text classification, data augmentation, and strategies to exploit the hierarchical structure of the taxonomy during training.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negli ultimi quattro anni la summarization astrattiva è stata protagonista di una evoluzione senza precedenti dettata da nuovi language model neurali, architetture transformer-based, elevati spazi dimensionali, ampi dataset e innovativi task di pre-training. In questo contesto, le strategie di decoding convertono le distribuzioni di probabilità predette da un modello in un testo artificiale, il quale viene composto in modo auto regressivo. Nonostante il loro cruciale impatto sulla qualità dei riassunti inferiti, il ruolo delle strategie di decoding è frequentemente trascurato e sottovalutato. Di fronte all'elevato numero di tecniche e iperparametri, i ricercatori necessitano di operare scelte consapevoli per ottenere risultati più affini agli obiettivi di generazione. Questa tesi propone il primo studio altamente comprensivo sull'efficacia ed efficienza delle strategie di decoding in task di short, long e multi-document abstractive summarization. Diversamente dalle pubblicazioni disponibili in letteratura, la valutazione quantitativa comprende 5 metriche automatiche, analisi temporali e carbon footprint. I risultati ottenuti dimostrano come non vi sia una strategia di decoding dominante, ma come ciascuna possieda delle caratteristiche adatte a task e dataset specifici. I contributi proposti hanno l'obiettivo di neutralizzare il gap di conoscenza attuale e stimolare lo sviluppo di nuove tecniche di decoding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rappresentazione della conoscenza in banca di dati testuali non strutturati in lingua Italiana.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (M.S.)--University of Illinois at Urbana-Champaign, 1966.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"April 1, 1969."