1000 resultados para Nanoparticles Sln
Resumo:
Random multimode lasers are achieved in 4-(dicyanomethylene)-2-tert-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) doped polystyrene thin films by introducing silicon dioxide (SiO2) nanoparticles as scatterers. The devices emit a resonance multimode peak at a center wavelength of 640 nm with a mode linewidth less than 0.87 nm. The threshold excitation intensity is as low as 0.25 mJ pulse(-1) cm(-2). It can be seen that the microscopic random resonance cavities can be formed by multiple scattering of SiO2 nanoparticles.
Resumo:
Novel bioactive glass (13G) nanoparticles/poly(L-lactide) (PLLA) composites were prepared as promising bone-repairing materials. The BG nanoparticles (Si:P:Ca = 29:13:58 weight ratio) of about 40 run diameter were prepared via the sol-gel method. In order to improve the phase compatibility between the polymer and the inorganic phase, PLLA (M-n = 9700 Da) was linked to the surface of the BG particles by diisocyanate. The grafting ratio of PLLA was in the vicinity of 20 wt.%. The grafting modification could improve the tensile strength, tensile modulus and impact energy of the composites by increasing the phase compatibility.
Resumo:
A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 +/- 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV-vis spectroscopic measurements).
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.
Resumo:
Stable gold nanoparticles with average size 1.7 nm synthesized by an amine-terminated ionic liquid showed enhanced electrocatalytic activity and high stability.
Resumo:
The size-controlled synthesis of monodispersed gold nanoparticles (AuNPs) stabilized by polyelectrolyte-functionalized ionic liquid (PFIL) is described. The resulting AuNPs' size, with a narrow distribution, can be tuned by the concentration of HAuCl4. Such PFIL-stabilized AuNPs (PFIL-AuNPs) showed a high stability in water at room temperature for at least one month; they were also quite stable in solutions of pH 7-13 and high concentration of NaCl.
Resumo:
Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.
Resumo:
The interaction between HAuCl4 and DNA has enabled creation of DNA-templated gold nanoparticles without formation of large nanoparticles. It was found that spheral DNA-HAuCl4 hybrid of 8.7 nm in diameter, flower-like DNA-HAuCl4 hybrid, nanoparticles chains and nanoparticles network of DNA-HAuCl4 hybrid could be obtained by varying the reaction conditions, including DNA concentration and reaction temperature. The intermediate product was investigated by shortening the reaction time of DNA and HAuCl4, and the obtained nanoparticles preserved a small DNA segment, which indicated that the reaction between DNA and HAuCl4 had a process.
Self-assembly of lambda-DNA networks/Ag nanoparticles: Hybrid architecture and active-SERS substrate
Resumo:
In this article, highly rough and stable surface enhanced Raman scattering (SERS)-active substrates had been fabricated by a facile layer by-layer technique. Unique lambda-DNA networks and CTAB capped silver nanoparticles (AgNP) were alternatively self-assembled on the charged mica surface until a desirable number of bilayers were reached. The as-prepared hybrid architectures were characterized by UV-vis spectroscopy, tapping mode atomic force microscopy (AFM) and confocal Raman microscopy, respectively.
Resumo:
Silver nanoparticles (Ag NPs) are one of the active substrates that are employed extensively in surface-enhanced Raman scattering (SERS), and aggregations of Ag NPs play an important role in enhancing the Raman signals. In this paper, we fabricated two kinds of SERS-active substrates utilizing the electrostatic adsorption and superior assembly properties of type I collagen. These were collagen-Ag NP aggregation films and nanoporous Ag films.
Resumo:
Colloidal gold was prepared by UV light irradiation of the mixture of HAuCl4 aqueous solution and poly(vinyl pyrrolidone) (PVP) ethanol solution in the presence of silver ions. The resulting sheet-like nanoparticles were found to self-assemble into nanoflowers by a centrifuging process. The results of control experiments reflected that only suitable size sheet-like nanoparticles could assemble into the flower-like structures. The presence of Ag ions and PVP are essential for the formation process of nanoflowers.
Resumo:
Au-Pt bimetallic nanoparticles (NPs) were synthesized by reducing the mixture of HAuCl4 and K2PtCl6 with ethanol in the presence of cinnamic acid (C6H5CHCHCO2H, CA) through a thermal process. It was found that the isolated NPs could gradually self-assemble into chain-like structures, ultimately to 3-dimensional network nanostructures by adjusting the molar ratio of CA to K2PtCl6. Energy-dispersive Spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction was used to confirm the formation of Au-Pt bimetallic nanostructures.
Resumo:
Fe3O4-polylactide (PLA) core-shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of L-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell.
Resumo:
The C-60 dianion is used to reduce tetrachloroauric acid (HAuCl4) for the first time; three-dimensional C-60 bound gold (Au-C-60) nanoclusters are obtained from C-60-directed self-assembly of gold nanoparticles due to the strong affinities of Au-C-60 and C-60-C-60. The process was monitored in situ by UV-vis-NIR spectroscopy. The resulting Au-C-60 nanoclusters were characterized using transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and FT-IR and Raman spectroscopies.
Resumo:
In this article, a novel strategy was applied to prepare dispersed ultrafine alpha-Fe2O3 nanoparticles. The initial Fe(OH)(3) nanoparticles were synthesized by the reaction of NaOH and FeCl3 in alcohol. With the new-formed nanoparticles as nuclei, NaCl crystallized and encapsulated the particles into solid cages. As a result, the nanoparticles were prevented from aggregating and growing. The composite of Fe(OH)(3) and NaCl was calcined and then washed by water to obtain the pure alpha-Fe2O3 nanoparticles.