984 resultados para Nanoparticles,Sunscreen,Toxicity,Diatom
Resumo:
A novel multifunctional inorganic-organic photorefractive (PR) poly(N-vinyl)-3-[p-nitrophenylazolcarbazolyl-CdS nanocomposites with different molar ratios of US to poly(N-vinyl)-3-[p-nitrophenylazo]carbazolyl (PVNPAK) were synthesized via a postazo-coupling reaction and chemically hybridized approach, respectively. The nanocomposites are highly soluble and could be obtained as film-forming materials with appreciably high molecular weights and low glass transition temperature (T,) due to the flexible spacers. The PVNPAK matrix possesses a highest-occupied molecular orbital value of about -5.36 eV determined from cyclic voltammetry. Second harmonic generation (SHG) could be observed in PVNPAK film without any poling procedure and 4.7 pm/V of effective second-order nonlinear optical susceptibility is obtained. The US particles as photosensitizers had a nanoscale size in PVNPAK adopting transmission electron microscopy. The improvement of interface quality between US and polymer matrix is responsible for efficient photoinduced charge generation efficiency in the nanocomposites. An asymmetric optical energy exchange between two beams on the polymer composites PVNPAK-CdS/ECZ has been found even without an external field in two-beam coupling (TBC) experiment, and the TBC gain and diffraction efficiency of 14.26 cm(-1) and 3.4% for PVNPAK-5-CdS/ECZ, 16.43 cm(-1) and 4.4% for PVNPAK-15-CdS/ECZ were measured at a 647.1 nm wavelength, respectively.
Resumo:
Part 1. Many interesting visual and mechanical phenomena occur in the critical region of fluids, both for the gas-liquid and liquid-liquid transitions. The precise thermodynamic and transport behavior here has some broad consequences for the molecular theory of liquids. Previous studies in this laboratory on a liquid-liquid critical mixture via ultrasonics supported a basically classical analysis of fluid behavior by M. Fixman (e. g., the free energy is assumed analytic in intensive variables in the thermodynamics)--at least when the fluid is not too close to critical. A breakdown in classical concepts is evidenced close to critical, in some well-defined ways. We have studied herein a liquid-liquid critical system of complementary nature (possessing a lower critical mixing or consolute temperature) to all previous mixtures, to look for new qualitative critical behavior. We did not find such new behavior in the ultrasonic absorption ascribable to the critical fluctuations, but we did find extra absorption due to chemical processes (yet these are related to the mixing behavior generating the lower consolute point). We rederived, corrected, and extended Fixman's analysis to interpret our experimental results in these more complex circumstances. The entire account of theory and experiment is prefaced by an extensive introduction recounting the general status of liquid state theory. The introduction provides a context for our present work, and also points out problems deserving attention. Interest in these problems was stimulated by this work but also by work in Part 3.
Part 2. Among variational theories of electronic structure, the Hartree-Fock theory has proved particularly valuable for a practical understanding of such properties as chemical binding, electric multipole moments, and X-ray scattering intensity. It also provides the most tractable method of calculating first-order properties under external or internal one-electron perturbations, either developed explicitly in orders of perturbation theory or in the fully self-consistent method. The accuracy and consistency of first-order properties are poorer than those of zero-order properties, but this is most often due to the use of explicit approximations in solving the perturbed equations, or to inadequacy of the variational basis in size or composition. We have calculated the electric polarizabilities of H2, He, Li, Be, LiH, and N2 by Hartree-Fock theory, using exact perturbation theory or the fully self-consistent method, as dictated by convenience. By careful studies on total basis set composition, we obtained good approximations to limiting Hartree-Fock values of polarizabilities with bases of reasonable size. The values for all species, and for each direction in the molecular cases, are within 8% of experiment, or of best theoretical values in the absence of the former. Our results support the use of unadorned Hartree-Pock theory for static polarizabilities needed in interpreting electron-molecule scattering data, collision-induced light scattering experiments, and other phenomena involving experimentally inaccessible polarizabilities.
Part 3. Numerical integration of the close-coupled scattering equations has been carried out to obtain vibrational transition probabilities for some models of the electronically adiabatic H2-H2 collision. All the models use a Lennard-Jones interaction potential between nearest atoms in the collision partners. We have analyzed the results for some insight into the vibrational excitation process in its dependence on the energy of collision, the nature of the vibrational binding potential, and other factors. We conclude also that replacement of earlier, simpler models of the interaction potential by the Lennard-Jones form adds very little realism for all the complication it introduces. A brief introduction precedes the presentation of our work and places it in the context of attempts to understand the collisional activation process in chemical reactions as well as some other chemical dynamics.
Resumo:
Sub-lethal toxicity tests, such as the scope-for-growth test, reveal simple relationships between measures of contaminant concentration and effect on respiratory and feeding physiology. Simple models are presented to investigate the potential impact of different mechanisms of chronic sub-lethal toxicity on these physiological processes. Since environmental quality is variable, even in unimpacted environments, toxicants may have differentially greater impacts in poor compared to higher quality environments. The models illustrate the implications of different degrees and mechanisms of toxicity in response to variability in the quality of the feeding environment, and variability in standard metabolic rate. The models suggest that the relationships between measured degrees of toxic stress, and the maintenance ration required to maintain zero scope-for-growth, may be highly nonlinear. In addition it may be possible to define critical levels of sub-lethal toxic effect above which no environment is of sufficient quality to permit prolonged survival.
Resumo:
Chronic diseases of the central nervous system are poorly treated due to the inability of most therapeutics to cross the blood-brain barrier. The blood-brain barrier is an anatomical and physiological barrier that severely restricts solute influx, including most drugs, from the blood to the brain. One promising method to overcome this obstacle is to use endogenous solute influx systems at the blood-brain barrier to transport drugs. Therapeutics designed to enter the brain through transcytosis by binding the transferrin receptor, however, are restricted within endothelial cells. The focus of this work was to develop a method to increase uptake of transferrin-containing nanoparticles into the brain by overcoming these restrictive processes.
To accomplish this goal, nanoparticles were prepared with surface transferrin molecules bound through various liable chemical bonds. These nanoparticles were designed to shed the targeting molecule during transcytosis to allow increased accumulation of nanoparticles within the brain.
Transferrin was added to the surface of nanoparticles through either redox or pH sensitive chemistry. First, nanoparticles with transferrin bound through disulfide bonds were prepared. These nanoparticles showed decreased avidity for the transferrin receptor after exposure to reducing agents and increased ability to enter the brain in vivo compared to those lacking the disulfide link.
Next, transferrin was attached through a chemical bond that cleaves at mildly acidic pH. Nanoparticles containing a cleavable link between transferrin and gold nanoparticle cores were found to both cross an in vitro model of the blood-brain barrier and accumulate within the brain in significantly higher numbers than similar nanoparticles lacking the cleavable bond. Also, this increased accumulation was not seen when using this same strategy with an antibody to transferrin receptor, indicating that behavior of nanoparticles at the blood-brain barrier varies depending on what type of targeting ligand is used.
Finally, polymeric nanoparticles loaded with dopamine and utilizing a superior acid-cleavable targeting chemistry were investigated as a potential treatment for Parkinson’s disease. These nanoparticles were capable of increasing dopamine quantities in the brains of healthy mice, highlighting the therapeutic potential of this design. Overall, this work describes a novel method to increase targeted nanoparticle accumulation in the brain.
Resumo:
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We report on three-dimensional precipitation of Au nanoparticles in gold ions-doped silicate glasses by a femtosecond laser irradiation and further annealing. Experimental results show that PbO addition plays the double roles of inhibiting hole-trapped centers generation and promoting formation and growth of gold nanoparticles. Additionally, glass containing PbO shows an increased non-linear absorption after femtosecond laser irradiation and annealing. The observed phenomena are significant for applications such as fabrications of three-dimensional multi-colored images inside transparent materials and three-dimensional optical memory, and integrated micro-optical switches. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The dinoflagellate Alexandrium minutum and the haptophyte Prymnesium parvum are well known for their toxin production and negative effects in marine coastal environments. A. minutum produces toxins which cause paralytic shellfish poisoning in humans and can affect copepods, shellfish and other marine organisms. Toxins of P. parvum are associated with massive fish mortalities resulting in negative impacts on the marine ecosystem and large economic losses in commercial aquaculture. The aim of this work is to improve our knowledge about the reliability of the use of marine invertebrate bioassays to detect microalgae toxicity, by performing: (i) a 24- to 48-h test with the brine shrimp Artemia franciscana; (ii) a 48-hour embryo-larval toxicity test with the sea urchin Paracentrotus lividus; and (iii) a 72-h test with the amphipod Corophium multisetosum. The results indicate that A. franciscana and P. lividus larvae are sensitive to the toxicity of A. minutum and P. parvum. LC50 comparison analysis between the tested organisms reveals that A. franciscana is the most sensitive organism for A. minutum. These findings suggest that the use of different organizational biological level bioassays appears to be a suitable tool for A. minutum and P. parvum toxicity assessment.
Resumo:
Au colloids were prepared by irradiation with a Nd:YAG laser. Au nanoparticles were characterized by absorption spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. It is found that the wavelength of the laser has no effect on the size but the number of the Au nanoparticles. By irradiating a transparent silica gel doped with gold ions with the focused laser in the gel and subsequent exposing in air, a space-selective pattern of letter "P" consisting of Au nanoparticles was observed inside the silica gel.
Resumo:
We obtain Au and Ag nanoparticles precipitated in glasses by irradiation of focused femtosecond pulses, and investigate the nonlinear absorptions of the glasses by using Z-scan technique with ns pulses at 532 nm. We observe the saturable absorption behavior for An nanoparticles precipitated glasses and the reverse saturable ones for Ag ones. We also obtain, by fitting to the experimental results in the light of the local field effect near and away from the surface plasmon resonance, chi(m)((3)) = 4.5 x 10(-7) and 5.9 x 10(-8) esu for m the imaginary parts of the third-order susceptibilities for Au and Ag nanoparticles, respectively. The nonlinear response of Au nanoparticles in the glass samples arises mainly from the hot-electron contribution and the saturation of the interband transitions near the surface plasmon resonance, whereas that of Ag nanoparticles in the glass samples from the interband transitions. These show that the obtained glasses can be used as optoelectronic devices suiting for different demands. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We show, using spatially resolved energy loss spectroscopy in a transmission electron microscopy (TEM), that GeO2 and GeO2-SiO2 glasses are extremely sensitive to high energy electrons. Ge nanoparticles can be precipitated in GeO2 glasses efficiently by the high-energy electron beam of a TEM. This is relevant to TEM characterization of luminescent Ge nanoparticles in silicate glasses, which may produce artificial results. (C) 2005 American Institute of Physics.
Resumo:
We report the space selective precipitation of Pd nanoparticles in Pd2+ -doped silicate glass by ultrashort laser pulses irradiation and further annealing. Absorption spectra, transmission electron microscopy, refractive index measurement and Z-scan technique demonstrated that metallic Pd nanoparticles were precipitated in the glass sample after irradiation by an 800-nm femtosecond laser and subsequent annealing at 600 degrees C. We discuss a refractive index change and nonlinear absorption that combines the precipitation of Pd nanoparticles. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.