979 resultados para NPK fertilization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) The first part deals with the different processes which may complicate Mendelian segregation and which may be classified into three groups, according to BRIEGER (1937b) : a) Instability of genes, b) Abnormal segregation due to distur- bances during the meiotic divisions, c) obscured segregation, after a perfectly normal meiosis, caused by elimination or during the gonophase (gametophyte in higher plants), or during zygophase (sporophyte). Without entering into detail, it is emphasized that all the above mentioned complications in the segregation of some genes may be caused by the action of other genes. Thus in maize, the instability of the Al factor is observed only when the gene dt is presente in the homozygous conditions (RHOADES 1938). In another case, still under observation in Piracicaba, an instability is observed in Mirabilis with regard to two pairs of alleles both controlling flower color. Several cases are known, especially in corn, where recessive genes, when homozigous, affect the course of meiosis, causing asynapsis (asyndesis) (BEADLE AND MC CLINTOCK 1928, BEADLE 1930), sticky chromosomes (BEADLE 1932), supermunmerary divisions (BEADLE 1931). The most extreme case of an obscured segregatiou is represented by the action of the S factors in self stetrile plants. An additional proof of EAST AND MANGELSDORF (1925) genetic formula of self sterility has been contributed by the studies on Jinked factors in Nicotina (BRIEGER AND MANGELSDORF (1926) and Antirrhinum (BRIEGER 1930, 1935), In cases of a incomplete competition and selection between pollen tubes, studies of linked indicator-genes are indispensable in the genetic analysis, since it is impossible to analyse the factors for gametophyte competition by direct aproach. 2) The flower structure of corn is explained, and stated that the particularites of floral biology make maize an excellent object for the study of gametophyte factors. Since only one pollen tube per ovule may accomplish fertilization, the competition is always extremely strong, as compared with other species possessing multi-ovulate ovaries. The lenght of the silk permitts the study of pollen tube competitions over a varying distance. Finally the genetic analysis of grains characters (endosperm and aleoron) simpliflen the experimental work considerably, by allowing the accumulation of large numbers for statistical treatment. 3) The four methods for analyzing the naturing of pollen tube competition are discussed, following BRIEGER (1930). Of these the first three are: a) polinization with a small number of pollen grains, b) polinization at different times and c) cut- ting the style after the faster tubes have passe dand before the slower tubes have reached the point where the stigma will be cut. d) The fourth method, alteration of the distatice over which competition takes place, has been applied largely in corn. The basic conceptions underlying this process, are illustrated in Fig. 3. While BRINK (1925) and MANGELSDORF (1929) applied pollen at different levels on the silks, the remaining authors (JONES, 1922, MANGELSDORF 1929, BRIEGER, at al. 1938) have used a different process. The pollen was applied as usual, after removing the main part of the silks, but the ears were divided transversally into halves or quarters before counting. The experiments showed generally an increase in the intensity of competition when there was increase of the distance over which they had to travel. Only MANGELSDORF found an interesting exception. When the distance became extreme, the initially slower tubes seemed to become finally the faster ones. 4) Methods of genetic and statistical analysis are discussed, following chiefly BRIEGER (1937a and 1937b). A formula is given to determine the intensity of ellimination in three point experiments. 5) The few facts are cited which give some indication about the physiological mechanism of gametophyte competition. They are four in number a) the growth rate depends-only on the action of gametophyte factors; b) there is an interaction between the conductive tissue of the stigma or style and the pollen tubes, mainly in self-sterile plants; c) after self-pollination necrosis starts in the tissue of the stigma, in some orchids after F. MÃœLLER (1867); d) in pollon mixtures there is an inhibitory interaction between two types of pollen and the female tissue; Gossypium according to BALLS (1911), KEARNEY 1923, 1928, KEARNEY AND HARRISON (1924). A more complete discussion is found in BRIEGER 1930). 6) A list of the gametophyte factors so far localized in corn is given. CHROMOSOME IV Ga 1 : MANGELSDORF AND JONES (1925), EMERSON 1934). Ga 4 : BRIEGER (1945b). Sp 1 : MANGELSDORF (1931), SINGLETON AND MANGELSDORF (1940), BRIEGER (1945a). CHROMOSOME V Ga 2 : BRIEGER (1937a). CHROMOSOME VI BRIEGER, TIDBURY AND TSENG (1938) found indications of a gametophyte factor altering the segregation of yellow endosperm y1. CHROMOSOME IX Ga 3 : BRIEGER, TIDBURY AND TSENG (1938). While the competition in these six cases is essentially determined by one pair of factors, the degree of elimination may be variable, as shown for Ga2 (BRIEGER, 1937), for Ga4 (BRIEGER 1945a) and for Spl (SINGLETON AND MANGELSDORF 1940, BRIEGER 1945b). The action of a gametophyte factor altering the segregation of waxy (perhaps Ga3) is increased by the presence of the sul factor which thus acts as a modifier (BRINCK AND BURNHAM 1927). A polyfactorial case of gametophyte competition has been found by JONES (1922) and analysed by DEMEREC (1929) in rice pop corn which rejects the pollen tubes of other types of corn. Preference for selfing or for brothers-sister mating and partial elimination of other pollen tubes has been described by BRIEGER (1936). 7) HARLAND'S (1943) very ingenious idea is discussed to use pollen tube factors in applied genetics in order to build up an obstacle to natural crossing as a consequence of the rapid pollen tube growth after selfing. Unfortunately, HARLAND could not obtain the experimental proof of the praticability of his idea, during his experiments on selection for minor modifiers for pollen tube grouth in cotton. In maize it should be possible to employ gametophyte factors to build up lines with preference for crossing, though the method should hardly be of any practical advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statistical analyses of an experiment on wheat were carried out with the aid of Mitscherlich's law. The experiment was made in Ponta Grossa, Paraná, by the Ministry of Agriculture of Brasil. Lime, in the form of Ca(OH)2, was applied at the levels of 0, 2, 4, 6 and 8 metric tons per hectare. A 5 x 5 Latin square was used. Lime was applied in 1940 and wheat was cultivated in the same plots for several years. The following fertilizers were annually used for all plots: NaNO3 100 kilograms per hectare, Superphosphate 350 kilograms per hectare, K2S04 80 kilograms per hectare. The statistical analysis of the data collected in 1941, 1942, 1943, 1947 and 1948, carried out in accordance with the methods previously introduced by Pimentel Gomes and Malavolta (1949 a, 1949 b) and Pimentel Gomes (1950), proved: I. That Mitscherlich's law could be correctly applied to the data. II. That there was a statistically significant effect of lime on wheat yield. III. That the optimum amount of lime to be applied to the soil lies between 5 and 15 hundred kilograms of Ca(OH)2 per hectare. IV. That there is a migration of calcium from some plots to others, in such a way that the data obtained in 1947 and 1948 are not representative of the amounts of lime applied in 1940. V. That the analysis of variance can be used, as the Bartlett test shows that the variances at the distinct levele of lime application are not statistically different. It must be noted that, with improved variety and fertilization, the yield was rised to about 2500 kilograms per hectare in 1947, and 1600 in 1948, being only of about 100 kilograms per hectare in 1940.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a field trial executed to compare cotton seed and cacau meals in the fertilization of sugar cane, variety Co290. The design chosen was a latin square of 6 x 6. The following conclusions can be drawn: 1. Cottonseed meal revealed to be statistically superior to cacau meal, being even superior to the mineral fertilizers plus cacau meal treatment. 2. From an economical point of view cotton seed meal, as a fertilizer for sugar cane, can not be substituted by cacau meal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the results of a pot and plot experiment which was carried out to determine the influence of sulphur and boron and the effect seed inoculation with Rhizobium meliloti in the yield of alfafa. Sulphur was applied as flower of sulphur at the rates of 1,000 and 2,000 kg por hectare; boron was employed in the proportion of 15 kg of borax per hectare; both sulphur and boron were distributed broadcast before planting; the experimental design chosen for the field trial was a latin square of 6 x 6 with the following treatments: Number Treatment 1 Control 2 One dosis S + inoculation 3 Two dosis S +inoculation 4 One dosis S + B + inoculation 5 B + inoculation 6 inoculation The crop supplied four cuttings in an eleven months period. The pot experiment nearly confirmed the plot one. The following conclusions can be drawn: 1. The classification of treatments in a decrescent order was: l.o - two doses S + inoculation; 2.o - one dosis S +inoculation, S + B + inoculation, and B + inoculation (these treatmente were not statistically different); 3.o - control; 4.o - inoculation; 2 The vield due to the treatment two dosis S + inoculation was 22 per cent higher than the control one, a fact that suggests that the S supply in the soil studied ("terra roxa misturada") is not sufficient for the total requirements of alfafa; 3. From an economical point of view the best treatment was: one dosis B + inoculation which permits a net gain of Cr$ 12.527,30 per hectare per year; 4. Based on the mentioned results we recommend in soils of same type the following fertilization for alfafa. 5 tons limestone/hectare 300 kg serranafosfato and 600 kg hiperfosfato/ha 300 kg muriate of potash/ha 15 kg borax/ha and a medium organic manuring if the soil is very poor in organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the preliminary results of a sand culture experiment carried out to obtain physiological bases to study the fertilization of cassava in the State of São Paulo. On the other hand, the authors are interested in the possible influence of mineral nutrients in the quantity and quality of starch. Cassava (Manihot utilissima Pohl.), "Branca de Sta. Catarina" variety, was grown under the following treatments: NO PO KO, NO P1 K1, N1 P0 Kl, NI P1K0, N2 p1 Kl N1 P2 K1 and N1 P1 K2. A striking response to phosphorus was observed among the treatments. However, once secured the necessary phosphoric level to the plant, the production becomes limited by nitrogen; in other words, increase in yield can be accomplished only by raising the nitrogenous level. The present results suggest that the remarkable effects of phosphates applied to cassava cultures in the State of São Paulo are due not only to the poor quality of our soils, as far phosphorus is concerned: we are facing a positive physiological response showed by the plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The present work was carried out to study the effects of mineral nutrients in the yield as well as in the composition of cassava roots. The variety "Branca de Sta. Catarina" was grown by the sand culture method, the following treatments being used: N0 P0 K0, N0 P1 Kl, N1 P0 K1, N2 P1 K0, N2 P1 K1, N1 P2 K1, and N1 P1 K2, where the figures 0, 1, and 2 denote the relative proportion of a given element. The nutrients were given as follows: N = 35 grams of ammonium nitrate per pot loaded with 120 pounds of washed sand; P1 = 35 grams of monocalcium phosphate; Kl = 28 grams of sulfate of potash. Besides those fertilizers, each pot received 26 grams of magnesium sulfate and weekly doses of micronutrients as indicated by HOAGLAND and ARNON (1939). To apply the macronutrients the total doses were divided in three parts evenly distributed during the life cycle of cassava. 2. As far yield of roots and foliage are concerned, there are a few points to be considered: 2.1. the most striking effect on yield was verified when P was omitted from the fertilization; this treatment gave the poorest yields of the whole experiment; the need of that element for the phosphorylation of the starchy reserves explains such result; 2.2. phosphorus and nitrogen, under the experimental conditions, showed to be the most important nutrients for cassava; the effect of potassium in the weight of the roots produced was much less marked; it is noteworthy to mention, that in absence of potassium, the roots yield decreased whereas the foliage increased; as potassium is essential for the translocation of carbohydrates it is reasonable to admit that sugars produced in the leaves instead of going down and accumulate as starch in the roots were consumed in the production of more green matter. 3. Chemical analyses of roots revealed the following interesting points: 3.1. the lack of phosphorus brought about the most drastic reduction in the starch content of the roots; while the treatment N1 P1 K1 gave 32 per cent of starch, with NI PO Kl the amount found was 25 per cent; this result can be explained by the requirement of P for the enzymatic synthesis of starch; it has to be mentioned that the decrease in the starch content was associated with the remarkable drop in yield observed when P was omitted from the nutrient medium; 3.2. the double dosis of nitrogen in the treatment N2 P1 K1, gave the highest yields; however the increase in yield did not produce any industrial gain: whereas the treatment N1 P1 K1 gave 32 per cent of starch, by raising the N level to N2, the starch content fell to 24 per cent; now, considering the total amount of starch present in the roots, one can see, that the increase in roots yield did not compensate for the marked decrease in the starch content; that is, the amount of starch obtained with N1 P1 K1 does not differ statistically from the quantity obtained with N2 P1 K1; as far we know facts similar to this had been observed in sugar beets and sugar cane, as a result of the interaction between nitrogen and sugar produced; the biochemical aspect of the problem is very interesting: by raising the amount of assimilable nitrogen, instead of the carbohydrates polymerize to starch, they do combine to the amino groups to give proteinaceous materials; actually, it did happen that the protein content increased from 2.91 to 5.14 per cent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kikuio grass (Pennisetum clandestinum Hochst) is beyond any doubt, a pasture very important for farm animals; since its chemical composition is very similar to that of alfalfa, the present field trial was carried out; a randomized block design with 8 treatments was selected as follows: 1 N - P - K - Ca - Mg (complete manuring) 2 N - P - K - Ca----- (without Mg) 3 N - P - K-------Mg (without Ca) 4 ----P - K - Ca - Mg (without N) 5 N------K - Ca Mg (without P) 6 N - P - Ca - Mg (without K) 7 organic matter (without mineral fertilizers) 8 control Nitrogen was applied as NaN03 (topdressed) and as ammonium sulfate; P2O5 was given as superphosphate associated to bonemeal; K2O was applied as muriate, CaO as "sambaquis" (oyster shells); MgO was given as MgSO4 (topdressed). The source of organic matter was farmyard manure. As far yields are concerned the following observations were made: 1. treatment n. 7 was superior to all others; 2. considering the mineral fertilizers, good responses were due to N and P2O5; 3. the control yield was exceedingly poor, being inferior to all the others treatments; The chemical analyses revealed that: 1. the protein content decreased accordingly to this order: 7, 6, 5 and 1; treatment 4 (without N) gave the lowest protein content; 2. treatment n. 4 produced the highest fat content; treatment no. 7 ranked second; no. 8 gave the lowest fat content; 3. crude fiber: highest - treatment 7; lowest - 8; 4. ashes: the ashes content was higher in treatment 5; proprobably because the most abundant element in the ashes is K, the ash content of treatment 6 (no K) was very low; 5. non nitrogenous substances (determined by difference) - high in treatment 8 and low in treatment 7; 6. mineral elements in the ashes - the element omitted from a given treatment was very low in the grasses therein obtained; this shows the relative poverty of the soil in that element. As general remark the Authors suggest the use of farmyard manure in the fertilization of Kikuio grass; farmyard manure could probably substitute wither green manure or compost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors discuss a formula for the determination of the most profitable level of fertilization (x*). This formula, presented by CAREY and ROBINSON (1953), can be written as: x*= (1/c) log cx u L10 + (1/c) log wu _______ ___ 1-10 x u t being c the growth factor in Mitscherlich's equation, x u a standard dressing of the nutrient, L 10 the Naeperian logarithm of 10, u the response to the standard dressing, w the unit price of the crop product, and i the unit price of the nutrient. This formula is a modification of one of the formulas of PIMENTEL GOMES (1953). One of its advantages is that is does not depend on A, the theoretical maximum harvest, which is not directly given by experimental data. But another advantage, proved in this. paper, is that the first term on the right hand side K= 1(/c) log cx u L 10 ____________ 1 - 10-cx u is practically independent of c, and approximately equivalent to (1/2) x u. So, we have approximately x* = (1/2) x u + (1/c) log wu . ____ x u t With experimental data we compute z = wu ____ x u t then using tables 1, 2 and 3, we may obtain Y - (1/c) log z and finally x* = (1/2) x u + Y. This is an easy way to determine the most profitable level of fertilization when experimental data on the response u to a dressing x u are available. Tables for the calculation of Y are included, for nitrogen, phosphorus, potash, and manure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors discuss from the economic point of view the use of a few functions intended to represent the yield y corresponding to a level xof the nutrient. They point out that under conditions of scarce capital what is actually most important is not to obtain the highest profit per hectare but the highest return per cruzeiro spent, so that we should maximize the function z = _R - C_ = _R_ - 1 , C C where R is the gross income and C the cost of production (fixed plus variable, both per hectare). Being C = M + rx, with r the unit price of the nutrient and Af the fixed cost of the crop, wo are led to the equation (M + rx)R' - rR = 0. With R = k + sx + tx², this gives a solution Xo = - Mt - &#8730; M²t² - r t(Ms - Kr)- _____________________ rt on the other hand, with R = PyA &#91;1 - 10-c(x + b)&#93;, x0 will be the root of equation (M + rx)cL 10 + r 10c(x + b) = 0 (12). Another solution, pointed out by PESEK and HEADY, is to maximize the function z = sx + tx² _________ m + rx where the numerator is the additional income due to the nutrient, and m is the fixed cost of fertilization. This leads to a solution x+ = - mt - &#8730;m²t² - mrst (13) _________________ rt However, we must have x+< _r_-_s_ I if we want to satisfy t _dy_ &gt; r. dx This condition is satisfied only if we have m < _(s__-__r)² (14), - 4 t a restriction apparently not perceived by PESEK and HEADY. A similar reasoning using Mitscherlich's law leads to equation (mcL 10 + r) + cr(L 10)x - r 10cx = 0 (15), with a similar restriction. As an example, data of VIEGAS referring to fertilization of corn (maize) gave the equation y - 1534 + 22.99 x - 0. 1069 x², with x in kg/ha of the cereal. With the prices of Cr$ 5.00 per kilo of maize, Cr$ 26.00 per kilo of P2O3,. and M = Cr$ 5,000.00, we obtain x0 = 61 kg/ha of P(2)0(5). A similar reasoning using Mitscherlich's law leads to x0 = 53 kg/ha. Now, if we take in account only the fixed cost of fertilization m = Cr$ 600.00 per hectare, we obtain from (13) x+ = 51 kg/ha of P2O5, while (14) gives x+ - 41 kg/ha. Note that if m = Cr$ 5,000.00, we obtain by formula (13) x+ = 88 kg/ha of P2O5, a solution which is not valid, since condition (14) is not satisfied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

WATER-CULTURE EXPERIMENTS. Two water-culture experiments were carried out to study the absorption and the translocation of radiozinc in young coffee plants as influenced by two factors, namely, concentration of heavy metals (iron, man ganese, copper and molybdenum) and method of application. Inert zinc was supplied at an uniform rate of 0. 05 p. p. m.; the levels of iron supply were 0, 1.0, and 10.0 p. p.m.; manganese was supplied in three doses 0, 0.5, and 5.0 p. p.m.; copper- 0, 0. 02, and 0. 2 p. p. m.; molybdenum- 0, 0. 01, and 0. 1 p. p. m. When applied to the nutrient solution the activity os the radiozinc (as zinc chloride) was 0. 15 microcuries per plant. In the study of the leaf absorption, Zn65 was supplied at the level of 0. 10 microcuries per plant; in this case the radioative material was brushed either on the lower or on the upper surface or both two pairs of mature leaves. The absorption period was 8 weeks. The radioactivity assay showed the following results: 1 - Among the heavy metals herein investigated the iron concentration did not affect the uptake of the radiozinc; by raising the level of Mn, Cu and Mo ten times, the absorption dropped to 50 per cent and even more when compared with the control plants; when, however, these micronutrients were omitted from the nutrient solution, an increase in the uptake of zinc was registered in the minus Cu treatment only. The effects of high levels of Mn, Cu and Mo probably indicate an interionic competition for a same site on a common binding substance in the cell surface. 2 - The absorption of the radiozinc directly applied to the leaf surface reached levels as high as 8 times that registered when the root uptake took place. Among the three methods of application which have been tried, brushing the lower surface of the leaves proved to be the most effective; this result is easily understood since the stomatal openings of the coffee leaves an preferentially located in the lower surface - in this treatment, about 40 per cent of the activity was absorved and around 12 per cent were translocated either to the old or to the newer organs. Chemical analyses for heavy metals, were carried out only in the plants received Zn65Cl2 in the nutrient solution; the results were as follows; 1 - Control plants had, per 1,000 gm, of dry weight the following amounts in mg.: Zn- 48 in the roots and 29 in the tops; Fe- 165 in the roots and 9 in the tops; Mn- 58 in the roots and 15 in the tops, Cu- 15 in the roots and 1. 2 in the tops; Mo- 2. 8 in the roots and 0. 45 in the tops. 2 - The effect of different levels of micronutrients in the composition of the plants can be summarized as follows: Fe and Zn- when omitted from the nutrient solution, the iron and zinc contents in the roots decreased, no variation being noted in the tops; the higher dosis caused an accumulation in the roots but no apparent effect in the tops; Mn- by omitting this micronutrient a decrease in its content in the roots was noted, where as the concentration in the tops was the same; Mo- no variation in roots and tops contents when molybdenum was omitted; higher dosis of manganese and molybdenum increased the amounts formed both in the roots and in the tops. 3 - The influence of the different concentrations of micronutrients heavy metals on the zinc content of the coffee plants can be described by saying that: Fe and Mo- no marked variation; Mn- no effect when omitted, reduced amount when the high dosis was supplied; Mn- when the plants did not receive manganese the zinc content in roots and tops was the same as in the control plants; a decrease in the zinc content of the total plant occurred when the high dosis was employed; Cu -the situation is similar to that described for manganese. Hence, results showed by the chemical analyses roughly correspond to those of the radioactivity assay; the use of the tracer technique, however, gave best informations along this line. SOIL-POTS EXPERIMENTS. The two types of soils which when selected support the most extensive coffee plantations in the State of São Paulo, Brazil: "arenito de Bauru", a light sandy soil and "terra roxa legitima", a red soil derived from basalt. Besides NPK containing salts, the coffee plants were given two doses of inert zinc (65 and 130 mg ZnCl2 per pot) and radiozinc at a total activity of 10(6) counts/minute. The results of the countings can be summarized as follows: 1 - When plants were grown in "arenito de Bauru" the activity absorbed as per cent of the total activity supplied was not affected by the dosis of inert zinc. The highest value found was around 0. 1 per cent. 2 - For the "terra roxa" plants, the situation is almost the same; there was, however, a slight increase in the absorption of the radiozinc when 130 mgm of ZnClg2 was given: a little above 0. 2 per cent of the activity supplied was absorbed. The results clearly show that the young coffee plants practically did not absorb none of the zinc supplied; two reasons at least could be pointed out to explain such a fact: 1 - Zinc fixation by an exchange with magnesium or by filling holes in the octahedral layer of aluminosilicates, probably kaolinite; 2 - No need for fertilizer zinc in the particular stage of life cycle under which the experiment was set up. The data from chemical analysis are roughly parallel to the above mentioned. When one attempts to compare - by taking data herein reported zinc uptake from nutrient solution, leaf brushing or from fertilizers in the soil, a practical conclusion can be drawn: the control of zinc deficiency in coffee plants should not be done by adding the zinc salts to the soil; in other words: the soil applications used so extensively in other countries seem not to be suitable for our conditions; hence zinc sprays should be used wherever necessary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cotton (variety I. A. C. 11) was grown on a sandy soil under two treatments, namely: (1) NPK + lime and (2) no fertilizers. Three weeks after planting a systematic sampling of entire plants was done every other week. In the laboratory determinations of dry weight were made and afterwards the various plant partes were submitted to chemical analyses, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) being determined. The aim of this work was to obtain information on the periods in which the absorption of the several macronutrients was more intense, this providing a clue for time of application of certain mineral fertilizers. Data obtained hereby allowed for the following main conclusions. The initial rate of growth of the cotton plant, judged by the determinations of dry weight, is rather slow. Seven weeks after planting and again five weeks two distinct periods of rapid growth take place. The uptake of macronutrients is rather small until the first flowers show up. From there on the absorption of minerals is intensified. From the time in which fruits are being formed to full maturity, the crop draws from the soil nearly 75 percent of the total amount of elements required to complet life cycle. This seams to point out the need for late dressings of fertilizers, particularly of those containing N and K. The following amounts of element in Kg/ha were absorbed by the fertilized plants: N - 83.2 P - 8.1 K - 65.5 Ca - 61.7 Mg - 12.8 and S - 33.2. The three major macronutrients, namely, N. P and K are exported as seed cotton in the following proportions with respect to the total amounts taken up by the entire crop: N - 1/3, P - 1/2 and K - 1/3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf samples from coffee plants under three different fertilizations, namely NPK, NP and PK, were collected for chemical analysis. It was found that the contents of N, K, Ca, Mg and S in the first, second, third and fourth pair of leaves were the same from the statistical point of view. On the onder hand, there was a significant effect of the position of the leaf in the branch on the P content, which was higher in the first pair. With the exception of the P level ,the four pairs of leaves are chemically uniform. Nevertheless it is not considered as convenient to mix all kinds of leaves into one sample, since the composition may vary a great deal when sampling is done some other time, such as the period of fruit growing. It is recommended therefore that either the third or the fourth pair leaves should be collected for routine work in foliar diagnosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Em um ensaio fatorial NPK 2x2x2 usou-se a técnica das parcelas subdivididas para estudar o efeito da matéria orgânica na presença e ausência da adubação mineral na colheita e na composição das fôlhas. Verificou-se que sòmente o N e o K e a matéria orgânica aumentaram as colheitas significativamente em 6 anos agrícolas. As produções anuais apresentam, entretanto, tendência decrescente. As doses de N e K empregadas mostraram-se suficientes para manter nas fôlhas um nível adequado dêsses dois elementos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Foi verificado, usando-se plantas de 11 anos de idade da variedade "Bourbon vermelho" submetidas a um ensaio fatorial NPK 2x2x2 que a incidência dos sintomas de desfolhamento e secamento sub-terminal ("pescoço pelado", "pescoço de galinha","cin turamento") é função inversa do uso de nitrogênio na adubação, estando negativamente correlacionada com o teor de nitrogênio nas folhas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O efeito da adubaçao NPK e da matéria orgânica na composição mineral do grão e na qualidade da bebida (prova de xícara) foi estudado. Verificou-se que a adubação fosfatada e o uso da matéria orgânica não influiram nas características mencionadas. A adubação nitrogenada e potássica aumentou o teor dos elementos correspondentes no grão e prejudicou pouco mas, significativamente a qualidade da bebida. Esses dados devem ser encarados com cautela e tidos apenas como preliminares.