913 resultados para NONELECTROACTIVE CATIONS
Resumo:
The title compound, ( C19H15N4)(2)[ CdCl4], a salt comprising two 2,3,5-triphenyl-substituted tetrazolium cations and a tetrachloridocadmate(II) anion, was synthesized by hydrothermal methods. In the anion, the Cd-II ion is tetrahedrally coordinated by four chloride anions. In the crystal structure, four cations and two anions pack into inversion-related subunits linked by C-H center dot center dot center dot Cl and offset pi-stacking interactions.Each of these subunits is surrounded by six others. Intermolecular pi-pi stacking interactions between phenyl rings are observed along the a axis, with perpendicular distances between the ring planes of 3.6015 and 3.6934 angstrom.
Resumo:
Azadirachtin (Az), as a botanical insecticide, is relatively safe and biodegradable. It affects a wide vaariety of biological processes, including the reduction of feeding, suspension of molting, death of larvae and pupae, and sterility of emerged adults in a dose-dependent manner. However, the mode of action of this toxin remains obscure. By using ion chromatography, we analyzed changes in six inorganic cation (Li+, Na+, NH4+, K+, Mg2+, and Ca2+) distributions of the whole body and hemolymph in Ostrinia furnacalis (G.) after exposure to sublethal doses of Az. The results showed that Az dramatically interfered with Na+, NH4+, K+, Mg2+, and Ca2+ distributions in hemolymph of O. furnacalis (G.) and concentrations of these five cations dramatically increased. However, in the whole body, the levels of K+, Mg2+, and Ca2+ significantly, decreased after exposure to Az, except that Na+ and NH4+ remained constant. Li+ was undetected in both the control and treated groups in the whole body and hemolymph. It is suggested that Az exerts its insecticidal effects on O. furnacalis (G.) by interfering with the inorganic cation distributions related to ion channels.
Resumo:
概要介绍工业无线网络的标准化进程,详细介绍了用于过程自动化的工业无线网络WIA规范的网络构成、拓扑结构、协议体系和关键技术,并将WIA-PA与WirelessHART、ISASP100两大工业无线标准进行了比较分析。
Resumo:
Glaciers in west China are the sources of the major great rivers in Asia, and the solid water resources are crucial to China and South Asia. Black carbon (BC) results in very complex climate effects not only in the atmosphere, but accelerates the melting after its deposit on the surface of snow/ice. As the main distributed area of glaciers in China, the Tibetan Plateau (TP) and Xinjiang region are abutted by South Asia, Central Asia, and Russia, and east China, and the atmospheric environment would be influenced by the BC emitted from these regions. Whereas, the BC’s temporal and spatial distributions for concentration in the mid and top troposphere in west China, its transport, and its radiative forcing after deposited on the snow/ice surface are not well understood at the present. In the field, we collected samples from surface snow, snow pits, ice core, and aerosol in the glaciers, analyzed BC content mainly by the thermo-oxidized method in the laboratory, and discussed temporal and spatial distributions for BC concentrations in glaciers, the transport, and its impacts on the environment. Several conclusions were derived as follows: 1_Spatial distribution and the impact on albedos for BC concentrations in snow/ice: the BC concentrations in the surface snow for the investigated glaciers could be placed in areas, the Tianshan Mountains > the central TP > the Pamirs > the Qilian Mountians > the Himalayas. This distribution could be attributed to the elevation of the glaciers, the topography of the TP, and more regional emissions. Probably significant impacts on the albedos of the glacier surface could be caused by BC deposits, and the estimated reduced albedos on the glaciers are 9.8% (the Zhadang glacier), 8.7% (the Miao’ergou Riverhead No.3 glacier), and 6.8% (the Kuitun River Haxilegen No.48 glacier), and 6.2% (the Dongkemadi glacier), and 5.3% (the La’nong glacier), and 4.2% (the Muztagata glacier), etc. 2_The temporal variance of BC concentrations in ice of the East Rongbuk Glacier (ERG) and its climatic implications: major cations and anions (e.g., SO42- and Ca2+) concentrations in aerosols during summer monsoon seasons showed their close relationships with the sources of air masses, in which the variance of SO42- concentrations suggested the atmospheric environment over the ERG was significantly influenced by the aerosols from South Asia. BC record based on an ice core suggested its deposit was dominantly transported by monsoons in summers and by westerlies in other seasons, and the BC from South Asia in summers dominated the varying trend of its concentrations in the ice core and caused higher concentrations in summers than those in other seasons. In the past 50 yrs, BC concentrations showed fluctuations, whereas showed an increasing tread in the most recent decade, and exceeded 50 μg kg-1 in the summer of 2001; correspondingly, the radiative forcing caused by BC showed an increasing trend since 1990s, and exceeded 4.5 W m-2 in the summer of 2001. 3_Cabonaceous aerosols in the Nam Co region: organic carbon (OC) concentration accounted for ~95% and BC for ~5% in the total carbonaceous aerosol concentration, which was significantly influenced by summer precipitations. OC was dominantly derived from fossil fuel burning and BC from both fossil fuel and biomass burning. Trajectory analysis and aerosol optical depth suggested the atmospheric environment in the Nam Co region was most probably influenced by the emissions from South Asia. The potential source regions of air pollutants in the Nam Co regions in summers might be Bangladesh and east India, and in winters might be the Indo-gangetic basin. The scavenging ratio of atmospheric BC by rainfalls was less than those at other sites. West China is a less-developed region for industry, where BC concentrations in the atmosphere and snow/ice could be significantly influenced by the emissions from the abutted regions with rising industries (South Asia, Central Asia, and Russia). For example, snow/ice BC concentrations in the glaciers of the Parmirs, the Tianshan Mountains, and the Qilian Mountains in the northeast margin of the TP might be more influenced by the emissions from Centrial Asia (transported by the westerlies), those in the glaciers of the Himalayas might be more influenced by the emissions from South Asia (transported by the monsoons and the westerlies), and atmospheric carbonaceous aerosols might also be more influenced by the emissions from South Asia (transported by the monsoons and the westerlies). The BC concentrations in some glaciers might cause significant impacts on the albedos for the glaciers, and therefore enhanced the radiative forcings, for example, the ERG. The research on the relationships among atmospheric and snow/ice BC and its radiative forcing, variance of snow cover, mass balance of glaciers, and climate forcing would be needed in future.
Resumo:
It is well known that our country is short of water-soluble potassium, but rich in insoluble potassium ores. Based on the work of the formers, using the orthogonal and monofactor experiments, the author optimized the production technology of micro-porous potassium silicon calcium mineral fertilizer by non-stirring hydrothermal chemical reaction when the alkaline earth booster CaO was available. The influences of temperature、time、reactant ratio and water-solid ratio on the dissolution rate of production’s elements were studied by orthogonal experiments, and the production technology was further optimized by monofactor experiments. By XRD、SEM、EDS and dissolving experiments, it was systematically studied that the effects of the reactant ratio、reaction time and reaction temperature on the properties of the production obtained by the hydrothermal reaction between KAlSi3O8 and CaO. The results showed that:when changing of the reaction condition, the reaction productions included tobermorite、 hibschite、α-C2SH and K2Ca(CO3)2; among which, K2Ca(CO3)2 was not the first production containing potassium, but K2Ca(CO3)2 was synthesized by the reaction among KOH、Ca(OH)2 and CO2. Whether the phase was synthesized was related to not only the reaction condition, but also their physicochemical properties; when the reaction condition was changed, the changes of different phases were different. The results of XRD and dissolution rate experiments explained the dissolution characteristic of every element of hydrothermal productions very well, and the relation between the dissolution rate of element and the phase of productions poured a good illumination on the production technology. The results of SEM and EDS showed that: hydrogarnet looked like spherical, and its surface was covered by some productions including K phase and Ca、Si phase; but the morphology of tobermorite was platy or lamellar or needlelike, and parts of Si in the structure of tobermorite were substituted by Al,and some K+ cations were inserted into the Ca interlayer of tobermorite at the same time. It was the first time that the interface between KAlSi3O8 and Ca(OH)2 was observed directly by SEM and EDS after the hydrothermal reaction, and the mechanism of hydrothermal reaction of KAlSi3O8 and Ca(OH)2 was further discussed. These results indicated that: the Ca-KAlSi3O8 intermediate compound was formed at first, and some K was released into the solution and KOH was produced at the same time; the C-S-H phase appeared before hydrogarnet, and then hydrogarnet was synthesized when the chemical reaction was carried on; if the reaction was carried on furthermore, α-C2SH、tobermorite and other C-S-H phases of different atom ratio appeared. The author found that the structure of KAlSi3O8 would be more drastically destroyed if there were some reactants, such as Ca(OH)2 which reacted with KAlSi3O8 and new phases were formed after the hydrothermal reaction between KAlSi3O8 and alkaline solution of equal ionic strength was finished. With the combination of calcination and hydrothermal reaction methods, the dissolution rate of products were greatly improved when the hydrothermal reaction was carried out after KAlSi3O8 and CaCO3 were calcined. Furthermore, the author has tentatively explored how to evaluate the effects of the differences of the activity of lime on the dissolution properties of hydrothermal products.
Resumo:
River is a major component of the global surface water and CO2 cycles. The chemistry of river waters reveals the nature of weathering on a basin-wide scale and helps us understand the exogenic cycles of elements in the continent-river-ocean system. In particular, geochemical investigation of large river gives important information on the biogeochemical cycles of the elements, chemical weathering rates, physical erosion rates and CO2 consumption during the weathering of the rocks within the drainage basin. Its importance has led to a number of detailed geochemical studies on some of the world's large and medium-size river systems. Flowing in the south of China, the Xijiang River is the second largest river in the China with respect to its discharge, after the Yangtze River. Its headwaters drain the YunGui Plateau, where altitude is approximately 2000 meters. Geologically, the carbonate rocks are widely spread in the river drainage basin, which covers an area of about 0.17xl06 km2, i.e., 39% of the whole drainage basin. This study focuses on the chemistry of the Xijiang river system and constitutes the first geochemical investigation into major and trace elements concentrations for both suspended and dissolved loads of this river and its main tributaries, and Sr isotopic composition of the dissolved load is also investigated, in order to determine both chemical weathering and mechanical erosion rates. As compared with the other large rivers of the world, the Xijiang River is characterized by higher major element concentration. The dissolved major cations average 1.17, 0.33, 0.15, and 0.04 mmol I"1 for Ca, Mg, Na, and K, respectively. The total cation concentrations (TZ+) in these rivers vary between 2.2 and 4.4 meq I'1. The high concentration of Ca and Mg, high (Ca+Mg)/(Na+K) ratio (7.9), enormous alkalinity and low dissolved SiO2/HCO3 ratio (0.05) in river waters reveal the importance of carbonate weathering and relatively weak silicate weathering over the river drainage basin. The major elements in river water, such as the alkalis and alkaline-earths, are of different origins: from rain water, silicate weathering, carbonate and evaporite weathering. A mixing model based on mass budget equation is used in this study, which allows the proportions of each element derived from the different source to be calculated. The carbonate weathering is the main source of these elements in the Xijiang drainage basin. The contribution of rainwater, especially for Na, reaches to approximately 50% in some tributaries. Dissolved elemental concentration of the river waters are corrected for rain inputs (mainly oceanic salts), the elemental concentrations derived from the different rock weathering are calculated. As a consequence, silicate, carbonate and total rock weathering rates, together with the consumption rates of atmospheric CO2 by weathering of each of these lithologies have been estimated. They provide specific chemical erosion rates varying between 5.1~17.8 t/km2/yr for silicate, 95.5~157.2 t/km2/yr for carbonate, and 100.6-169.1 t/km2/yr for total rock, respectively. CO2 consumptions by silicate and carbonate weathering approach 13><109and 270.5x10 mol/yr. Mechanical denudation rates deduced from the multi-year average of suspended load concentrations range from 92-874 t/km2/yr. The high denudation rates are mainly attributable to high relief and heavy rainfall, and acid rain is very frequent in the drainage basin, may exceed 50% and the pH value of rainwater may be <4.0, result from SO2 pollution in the atmosphere, results in the dissolution of carbonates and aluminosilicates and hence accelerates the chemical erosion rate. The compositions of minerals and elements of suspended particulate matter are also investigated. The most soluble elements (e.g. Ca, Na, Sr, Mg) are strongly depleted in the suspended phase with respect to upper continent crust, which reflects the high intensity of rock weathering in the drainage basin. Some elements (e.g. Pb, Cu, Co, Cr) show positive anomalies, Pb/Th ratios in suspended matter approach 7 times (Liu Jiang) to 10 times (Nanpan Jiang) the crustal value. The enrichment of these elements in suspended matter reflects the intensity both of anthropogenic pollution and adsorption processes onto particles. The contents of the soluble fraction of rare earth elements (REE) in the river are low, and REE mainly reside in particulate phase. In dissolved phase, the PAAS-normalized distribution patterns show significant HREE enrichment with (La/Yb) SN=0.26~0.94 and Ce depletion with (Ce/Ce*) SN=0.31-0.98, and the most pronounced negative Ce anomalies occur in rivers of high pH. In the suspended phase, the rivers have LREE-enriched patterns relative to PAAS, with (La/Yb) SN=1 -00-1 .40. The results suggest that pH is a major factor controlling both the absolute abundances of REE in solution and the fractionation of REE of dissolved phase. Ce depletion in river waters with high pH values results probably from both preferential removal of Ce onto Fe-Mn oxide coating of particles and CeC^ sedimentation. This process is known to occur in the marine environment and may also occur in high pH rivers. Positive correlations are also observed between La/Yb ratio and DOC, HCO3", PO4", suggesting that colloids and (or) adsorption processes play an important role in the control of these elements.
Resumo:
The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.
Resumo:
Catalysts assembled in emulsions are found to be potentially recoverable and efficient for a number of catalytic reactions. The catalysts composed of polyoxometalate anions and quaternary ammonium cations have been designed and synthesized according to the catalytic reactions and by optimizing the structures of cations and anions. The catalysts act essentially as surfactants, which are uniformly distributed in the interface of the emulsion droplets, and accordingly behave like homogeneous catalysts. The catalysts show remarkable selectivity and activity in the oxidation of sulfur-containing molecules to sulfones in diesel and the selective oxidation of alcohols to ketones, using H2O2 as oxidant. For an example, the catalyst demonstrated over 96% efficiency of H2O2 and similar to 100% selectivity to sulfones for the selective oxidation of sulfur-containing molecules in real diesel. Moreover, the catalysts can be separated and recycled by a simple demulsification and re-emulsification.
Resumo:
Nitrogen is the most abundant element in atmosphere and fundamental component of proteins, nucleic acids and other essential molecules. In the past century the industrial use of nitrogen compounds has grown exponentially causing widespread pollution. Nitrogen pollution has wide-ranging impacts including contributions to global warming, acid rains and eutrophication. Reduction of nitrogen use in industry and agriculture coupled whit remediation treatments could represent a solution. To this purpose we isolated from environmental samples a nitrophile strain capable of removing nitrogen compounds efficiently from the medium. Through the molecular characterization, we identified the strain as a Rhodotorula glutinis that we called DSBCA06. We examined the main metabolic features of the strain, also to determine the best growing conditions. At the same time, the ability of the strain to grow in presence of high nitrite concentrations was assayed, being a relevant feature poorly studied earlierfor other environmental yeasts. The ability of the strain to grow in presence of heavy metal cations was also tested, showing a noticeable tolerance. The cost of bioremediation treatments is often a problem. One of the way to obviate this is to produce valuable secondary metabolites, capable of positively impact the cost of the processes. In this context the ability of the strain to produce carotenoids, natural molecules with antioxidant properties used for food production, cosmetic and pharmaceutical industry, has been evaluated. The strain Rhodotorula glutinis DSBCA06 showed interesting features suggesting its possible use in bioremediation or industrials process for production of secondary metabolites such as lipids and carotenoids.
Resumo:
Pyatt, F.B., Pyatt, A.J., Walker, C., Sheen, T., Grattan, J.P, The heavy metal content of skeletons from an ancient metalliferous polluted area in southern Jordan with particular reerence to bioaccumulation and human health, Ecotoxicology & Environmental Safety 60, 13th August 2003, 295-300
Resumo:
Pyatt, B. Barker, G. Birch, P. Gilbertson, D. Grattan, J. Mattingly, D. King Solomon's Miners - Starvation and Bioaccumulation? An Environmental Archaeological Investigation in Southern Jordan. Ecotoxicology and Environmental safety 43, 305-308 (1999) Environmental Research, Section B
Resumo:
Grattan, J., Huxley, S., Karaki, L. A., Toland, H., Gilbertson, D., Pyatt, B., Saad, Z. A. (2002). 'Death . . . more desirable than life'? The human skeletal record and toxicological implications of ancient copper mining and smelting in Wadi Faynan, southwestern Jordan. Toxicology and Industrial Health, 18 (6), 297-307.
Resumo:
Wydział Chemii
Resumo:
This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.
Resumo:
We discuss the design principles of TCP within the context of heterogeneous wired/wireless networks and mobile networking. We identify three shortcomings in TCP's behavior: (i) the protocol's error detection mechanism, which does not distinguish different types of errors and thus does not suffice for heterogeneous wired/wireless environments, (ii) the error recovery, which is not responsive to the distinctive characteristics of wireless networks such as transient or burst errors due to handoffs and fading channels, and (iii) the protocol strategy, which does not control the tradeoff between performance measures such as goodput and energy consumption, and often entails a wasteful effort of retransmission and energy expenditure. We discuss a solution-framework based on selected research proposals and the associated evaluation criteria for the suggested modifications. We highlight an important angle that did not attract the required attention so far: the need for new performance metrics, appropriate for evaluating the impact of protocol strategies on battery-powered devices.