949 resultados para NITROUS-OXIDE EMISSIONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely recognised that defining trade-offs between greenhouse gas emissions using ‘emission equivalence’ based on global warming potentials (GWPs) referenced to carbon dioxide produces anomalous results when applied to methane. The short atmospheric lifetime of methane, compared to the timescales of CO2 uptake, leads to the greenhouse warming depending strongly on the temporal pattern of emission substitution. We argue that a more appropriate way to consider the relationship between the warming effects of methane and carbon dioxide is to define a ‘mixed metric’ that compares ongoing methane emissions (or reductions) to one-off emissions (or reductions) of carbon dioxide. Quantifying this approach, we propose that a one-off sequestration of 1 t of carbon would offset an ongoing methane emission in the range 0.90–1.05 kg CH4 per year. We present an example of how our approach would apply to rangeland cattle production, and consider the broader context of mitigation of climate change, noting the reverse trade-off would raise significant challenges in managing the risk of non-compliance. Our analysis is consistent with other approaches to addressing the criticisms of GWP-based emission equivalence, but provides a simpler and more robust approach while still achieving close equivalence of climate mitigation outcomes ranging over decadal to multi-century timescales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to provide realistic data for air pollution inventories and source apportionment at airports, the morphology and composition of ultrafine particles (UFP) in aircraft engine exhaust were measured and characterized. For this purpose, two independent measurement techniques were employed to collect emissions during normal takeoff and landing operations at Brisbane Airport, Australia. PM1 emissions in the airfield were collected on filters and analyzed using the particle-induced X-ray emission (PIXE) technique. Morphological and compositional analyses of individual ultrafine particles in aircraft plumes were performed on silicon nitride membrane grids using transmission electron microscopy (TEM) combined with energy-dispersive X-ray microanalysis (EDX). TEM results showed that the deposited particles were in the range of 5 to 100 nm in diameter, had semisolid spherical shapes and were dominant in the nucleation mode (18 – 20 nm). The EDX analysis showed the main elements in the nucleation particles were C, O, S and Cl. The PIXE analysis of the airfield samples was generally in agreement with the EDX in detecting S, Cl, K, Fe and Si in the particles. The results of this study provide important scientific information on the toxicity of aircraft exhaust and their impact on local air quality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emission rates of ammonia (NH3) are reported for a fleet of 130 light-, medium-, and heavy-duty vehicles recruited in Guangzhou, China. NH3 measurements were performed using Nessler's Reagents spectrophotometry and nationwide standard chassis dynamometer test cycles required by Chinese EPA. Emissions of CO and NOx were also measured during these test cycles. Emission factors of NH3 were calculated for each type of vehicle and used to estimate the total emissions of NH3 from motor vehicles in Guangzhou (GZ) in 2009. Emission factors of NH3 show large variations among different categories of vehicles, with a range from 4 to 138 mg km-1. The average emissions of NH3 in Guangzhou in 2009 were estimated to be 983 t, with a range from 373 to 2136 t. In addition, it was found that vehicles with the highest NH3 emission rates possess the following characteristics: mediumand heavy-duty vehicles, certified with out-of-date emission standards, mid-range odometer readings, and higher CO and NOx emission rates. The results of this study will be useful for developing NH3 emissions inventories in Guangzhou and other urban areas in China.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of the electrical and hydrogen sensing properties of a novel Schottky diode based on a nanostructured lanthanum oxide-molybdenum oxide compound is presented herein. Molybdenum oxide (MoO3) nanoplatelets were grown on SiC substrates via thermal evaporation which was then subsequently coated with lanthanum oxide (La2O3) by RF sputtering. The current-voltage characteristics and hydrogen sensing performance (change in barrier height and sensitivity as well as the dynamic response) were examined from 25 to 300°C. At 180°C, a voltage shift of 2.23V was measured from the sensor while exposed to 1% hydrogen gas under a 100 μA constant reverse bias current. The results indicate that the presence of a La2O3 thin layer substantially improves the hydrogen sensitivity of the MoO3 nanoplatelets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in nanowires of metal oxide oxides has been exponentially growing in the last years, due to the attracting potential of application in electronic, optical and sensor field. We have focused our attention on the sensing properties of semiconducting nanowires as conductometric and optical gas sensors. Single crystal tin dioxide nanostructures were synthesized to explore and study their capability in form of multi-nanowires sensors. The nanowires of SnO2 have been used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. For the first time, a reactive oxide layer in this device has been replaced by SnO2 nanowires. Proposed sensor has maintained the advantageous properties of known SiC- based MOS devices, that can be employed for the monitoring of gases (hydrogen and hydrocarbons) emitted by industrial combustion processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the widespread use of paper, plastic or ceramics in dielectric capacitors, water has not been commonly used as a dielectric due to its tendency to become conductive as it easily leaches ions from the environment. We show here that when water is confined between graphene oxide sheets, it can retain its insulating nature and behave as a dielectric. A hydrated graphene oxide film was used as a dielectric spacer to construct a prototype water-dielectric capacitor. The capacitance depends on the water content of the hydrated GO film as well as the voltage applied to the device. Our results show that the capacitance per unit area of the GO film is in the range of 100–800 mF cm �2, which is 5–40 times that of the double layer capacitance per surface area of activated carbon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Article 2(2) of the Kyoto Protocol imposes an obligation only on certain developed countries, working through the International Maritime Organisation (IMO), to pursue the reduction of greenhouse gas (GHG) emissions from marine bunker fuels. The IMO recently took the initiative to adopt a new legal instrument for the reduction of shipgenerated greenhouse gas emissions. Some developing countries have suggested that the proposed IMO initiative should strictly adhere to Article 2(2) of the Kyoto Protocol and the principle of Common but Differentiated Responsibility (CBDR). Against this backdrop, this article intends to review the extent to which it is possible to propose an international legal instrument for the reduction of GHG emissions from marine bunker fuels which is applicable only to ships from developed countries considering the complex characteristics of the international shipping industry. This article also examines how far this approach is justifiable even within the framework of the CBDR principle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document provides data for the case study presented in our recent earthwork planning papers. Some results are also provided in a graphical format using Excel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solution-phase photocatalytic reduction of graphene oxide to reduced graphene oxide (RGO) by titanium dioxide (TiO2) nanoparticles produces an RGO-TiO2 composite that possesses enhanced charge transport properties beyond those of pure TiO2 nanoparticle films. These composite films exhibit electron lifetimes up to four times longer than that of intrinsic TiO2 films due to RGO acting as a highly conducting intraparticle charge transport network within the film. The intrinsic UV-active charge generation (photocurrent) of pure TiO2 was enhanced by a factor of 10 by incorporating RGO; we attribute this to both the highly conductive nature of the RGO and to improved charge collection facilitated by the intimate contact between RGO and the TiO2, uniquely afforded by the solution-phase photocatalytic reduction method. Integrating RGO into nanoparticle films using this technique should improve the performance of photovoltaic devices that utilize nanoparticle films, such as dye-sensitized and quantum-dot-sensitized solar cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adequate amount of graphene oxide (GO) was firstly prepared by oxidation of graphite and GO/epoxy nanocomposites were subsequently prepared by typical solution mixing technique. X-ray diffraction (XRD) pattern, X-ray photoelectron (XPS), Raman and Fourier transform infrared (FTIR) spectroscopy indicated the successful preparation of GO. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images of the graphite oxide showed that they consist of a large amount of graphene oxide platelets with a curled morphology containing of a thin wrinkled sheet like structure. AFM image of the exfoliated GO signified that the average thickness of GO sheets is ~1.0 nm which is very similar to GO monolayer. Mechanical properties of as prepared GO/epoxy nanocomposites were investigated. Significant improvements in both Young’s modulus and tensile strength were observed for the nanocomposites at very low level of GO loading. The Young’s modulus of the nanocomposites containing 0.5 wt% GO was 1.72 GPa, which was 35 % higher than that of the pure epoxy resin (1.28 GPa). The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fourier-transform infrared (FTIR) spectra are reported of formic acid and formaldehyde on ZnO/SiO2, reduced Cu/ZnO/SiO2 and reoxidised Cu/ZnO/SiO2 catalyst. Formic acid adsorption on ZnO/SiO2 produced mainly bidentate zinc formate species with a lesser quantity of unidentate zinc formate. Formic acid on reduced Cu/ZnO/SiO2 catalyst resulted not only in the formation of bridging copper formate structures but also in an enhanced amount of formate relative to that for ZnO/SiO2 catalyst. Formic acid on reoxidised Cu/ZnO/SiO2 gave unidentate formate species on copper in addition to zinc formate moieties. The interaction of formaldehyde with ZnO/SiO2 catalyst resulted in the formation of zinc formate species. The same reaction on reduced Cu/ZnO/SiO2 catalyst gave bridging formate on copper and a remarkable increase in the quantity of formate species associated with the zinc oxide. Adsorption of formaldehyde on a reoxidised Cu/ZnO/SiO2 catalyst produced bridging copper formate and again an apparent increase in the concentration of zinc formate species. An explanation in terms of the adsorption of molecules at special sites located at the interface between copper and zinc oxide is given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The techniques of environmental scanning electron microscopy (ESEM) and Raman microscopy have been used to respectively elucidate the morphological changes and nature of the adsorbed species on silver(I) oxide powder, during methanol oxidation conditions. Heating Ag2O in either water vapour or oxygen resulted firstly in the decomposition of silver(I) oxide to polycrystalline silver at 578 K followed by sintering of the particles at higher temperature. Raman spectroscopy revealed the presence of subsurface oxygen and hydroxyl species in addition to surface hydroxyl groups after interaction with water vapour. Similar species were identified following exposure to oxygen in an ambient atmosphere. This behaviour indicated that the polycrystalline silver formed from Ag2O decomposition was substantially more reactive than silver produced by electrochemical methods. The interaction of water at elevated temperatures subsequent to heating silver(I) oxide in oxygen resulted in a significantly enhanced concentration of subsurface hydroxyl species. The reaction of methanol with Ag2O at high temperatures was interesting in that an inhibition in silver grain growth was noted. Substantial structural modification of the silver(I) oxide material was induced by catalytic etching in a methanol/air mixture. In particular, "pin-hole" formation was observed to occur at temperatures in excess of 773 K, and it was also recorded that these "pin- holes" coalesced to form large-scale defects under typical industrial reaction conditions. Raman spectroscopy revealed that the working surface consisted mainly of subsurface oxygen and surface Ag=O species. The relative lack of sub-surface hydroxyl species suggested that it was the desorption of such moieties which was the cause of the "pin-hole" formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combined techniques of in situ Raman microscopy and scanning electron microscopy (SEM) have been used to study the selective oxidation of methanol to formaldehyde and the ethene epoxidation reaction over polycrystalline silver catalysts. The nature of the oxygen species formed on silver was found to depend critically upon the exact morphology of the catalyst studied. Bands at 640, 780 and 960 cm-1 were identified only on silver catalysts containing a significant proportion of defects. These peaks were assigned to subsurface oxygen species situated in the vicinity of surface dislocations, AgIII=O sites formed on silver atoms modified by the presence of subsurface oxygen and O2 - species stabilized on subsurface oxygen-modified silver sites, respectively. The selective oxidation of methanol to formaldehyde was determined to occur at defect sites, where reaction of methanol with subsurface oxygen initially produced subsurface OH species (451 cm-1) and adsorbed methoxy species. Two distinct forms of adsorbed ethene were identified on oxidised silver sites. One of these was created on silver sites modified by the interaction of subsurface oxygen species, and the other on silver crystal planes containing a surface coverage of atomic oxygen species. The selective oxidation of ethene to ethylene oxide was achieved by the reaction between ethene adsorbed on modified silver sites and electrophilic AgIII=O species, whereas the combustion reaction was perceived to take place by the reaction of adsorbed ethene with nucleophilic surface atomic oxygen species. Defects were determined to play a critical role in the epoxidation reaction, as these sites allowed the rapid diffusion of oxygen into subsurface positions, and consequently facilitated the formation of the catalytically active AgIII=O sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman and Fourier transform infrared (FT-IR) spectroscopy have been applied to a systematic investigation of the adsorption and decomposition of dichlorodifluoromethane (CCl2F2, CFC-12), fluorotrichloromethane (CCl3F, CFC-11), chlorodifluoromethane (CHClF2, HCFC-22) and molecular chlorine on oxide surfaces. Additionally, the effects of heating and ultraviolet photolysis of the CFC and HCFCs adsorbed on the oxide surfaces have been investigated. Spectral features for these species indicated a small wavenumber shift (1-6 cm-1) associated with the adsorbed phase. Some evidence, specifically the appearance of the Raman band at 507 cm-1, is presented to show that chlorine decomposition species are associated with these oxide surfaces. It was concluded that the new spectral feature (at ca. 507 cm-1) related with the decomposition of the CFC and HCFC molecules was an important indicator of the extent to which the reaction between the adsorbed CFC and HCFC and oxide surface has taken place. The extent of CFC-surface interaction has been quantified in terms of a maximum (Raman) frequency shift parameter (AM). Wavenumber shifts suggest both cation-adsorbate and non-specific adsorption interactions are occurring in the internal channels of the zeolites. Slow decomposition of the adsorbed CFCs under ultraviolet-visible photolysis (at ? > 300 nm) and/or thermal treatment was observed spectroscopically. Using FT-IR spectroscopy, the formation of gas-phase products (CO, CO2, HCl) both onyn photolysis and heating was evident. Results of these measurements are compared with the observed atmospheric reactivity of these compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The existing literature shows driving speed significantly affects levels of safety, emissions, and stress in driving. In addition, drivers who feel tense when driving have been found to drive more slowly than others. These findings were mostly obtained from crash data analyses or field studies, and less is known regarding driver perceptions of the extent to which reducing their driving speed would improve road safety, reduce their car’s emissions, and reduce stress and road rage. This paper uses ordered probit regression models to analyse responses from 3538 Queensland drivers who completed an online RACQ survey. Drivers most strongly agreed that reducing their driving speed would improve road safety, less strongly agreed that reducing their driving speed would reduce their car’s emissions and least strongly agreed that reducing their driving speed would reduce stress and road rage. Younger drivers less strongly agreed that these benefits would occur than older drivers. Drivers of automatic cars and those who are bicycle commuters agreed more to these benefits than other drivers. Female drivers agreed more strongly than males on improving safety and reducing stress and road rage. Type of fuel used, engine size, driving experience, and distance driven per week were also found to be associated with driver perceptions, although these were not found to be significant in all of the regression models. The findings from this study may help in developing targeted training or educational measures to improve drivers’ willingness to reduce their driving speed.