680 resultados para NEPHROLOGY
Resumo:
Objective: Previous studies investigating associations between serum lipids and renal disease have generally not taken into account dietary intake or physical activity - both known to influence circulating lipids. Furthermore, inclusion of patients on HMG-CoA reductase inhibitors may also have influenced findings due to the pleiotropic effect of this medication. Therefore, the aim of this study is to determine the relationships between serum lipids and renal function in a group of patients not taking lipid-lowering medication and taking into account dietary intake and physical activity. Methods: Data from 100 patients enrolled in the Lipid Lowering and Onset of Renal Disease (LORD) trial were used in this study. Patients were included with serum creatinine > 120 mu mol/l, and excluded if they were taking lipid-lowering medication. Unadjusted and adjusted relationships were determined between fasting serum lipid concentrations (total cholesterol, low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol/HDL ratio) and measures of renal function (estimated glomerular filtration rate (eGFR), creatinine clearance and serum creatinine) and urinary protein excretion. Results: Significant (p < 0.05) negative unadjusted relationships were found between lipids (total cholesterol, LDL and HDL cholesterol) and serum creatinine. In support of these findings, logarithmically-transformed lipids (total cholesterol, LDL and HDL cholesterol) were significantly associated with eGFR and creatinine clearance although the effects were of a smaller magnitude. Adjustment for dietary saturated fat intake and physical activity did not substantially change these effects. Conclusion: These data do not support the premise that lipids are associated with renal dysfunction in patients with normocholesterolemia.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
Side population (SP) cells in the adult kidney are proposed to represent a progenitor population. However, the size, origin, phenotype, and potential of the kidney SP has been controversial. In this study, the SP fraction of embryonic and adult kidneys represented 0.1 to 0.2% of the total viable cell population. The immunophenotype and the expression profile of kidney SP cells was distinct from that of bone marrow SP cells, suggesting that they are a resident nonhematopoietic cell population. Affymetrix expression profiling implicated a role for Notch signaling in kidney SP cells and was used to identify markers of kidney SP. Localization by in situ hybridization confirmed a primarily proximal tubule location, supporting the existence of a tubular niche, but also revealed considerable heterogeneity, including the presence of renal macrophages. Adult kidney SP cells demonstrated multilineage differentiation in vitro, whereas microinjection into mouse metanephroi showed that SP cells had a 3.5- to 13-fold greater potential to contribute to developing kidney than non-SP main population cells. However, although reintroduction of SP cells into an Adriamycin-nephropathy model reduced albuminuria:creatinine ratios, this was without significant tubular integration, suggesting a humoral role for SP cells in renal repair. The heterogeneity of the renal SP highlights the need for further fractionation to distinguish the cellular subpopulations that are responsible for the observed multilineage capacity and transdifferentiative and humoral activities.
Resumo:
Erythropoietin (EPO) has been used widely for the treatment of anaemia associated with chronic kidney disease and cancer chemotherapy for nearly 20 years. More recently, EPO has been found to interact with its receptor (EPO-R) expressed in a large variety of non-haematopoietic tissues to induce a range of cytoprotective cellular responses, including mitogenesis, angiogenesis, inhibition of apoptosis and promotion of vascular repair through mobilization of endothelial progenitor cells from the bone marrow. Administration of EPO or its analogue, darbepoetin, promotes impressive renoprotection in experimental ischaemic and toxic acute renal failure, as evidenced by suppressed tubular epithelial apoptosis, enhanced tubular epithelial proliferation and hastened functional recovery. This effect is still apparent when administration is delayed up to 6 h after the onset of injury and can be dissociated from its haematological effects. Based on these highly encouraging results, at least one large randomized controlled trial of EPO therapy in ischaemic acute renal failure is currently underway. Preliminary experimental and clinical evidence also indicates that EPO may be renoprotective in chronic kidney disease. The purpose of the present article is to review the renoprotective benefits of different protocols of EPO therapy in the settings of acute and chronic kidney failure and the potential mechanisms underpinning these renoprotective actions. Gaining further insight into the pleiotropic actions of EPO will hopefully eventuate in much-needed, novel therapeutic strategies for patients with kidney disease.
Resumo:
Regenerative medicine is being heralded in a similar way as gene therapy was some 15 yr ago. it is an area of intense excitement and potential, as well as myth and disinformation. However, with the increasing rate of end-stage renal failure and limited alternatives for its treatment, we must begin to investigate seriously potential regenerative approaches for the kidney. This review defines which regenerative options there might be for renal disease, summarizes the progress that has been made to date, and investigates some of the unique obstacles to such treatments that the kidney presents. The options discussed include in situ organ repair via bone marrow recruitment or dedifferentiation; ex vivo stem cell therapies, including both autologous and nonautologous options; and bioengineering approaches for the creation of a replacement organ.
Resumo:
Background: Cyclosporin A (CsA)-treated renal transplant recipients (RTR) exhibit relative hyperhomocystinemia and vascular dysfunction. Folate supplementation lowers homocysteine and has been shown to improve vascular function in healthy subjects and patients with coronary artery disease. The aim of this study was to assess the effects of 3 months of folate supplementation (5 mg/day) on vascular function and structure in RTR. Methods: A double-blind, placebo-controlled crossover study was conducted in 10 CsA-treated RTR. Vascular structure was measured as carotid artery intima media thickness (IMT) and function was assessed as changes in brachial artery diameter during reactive hyperemia (RE) and in response to glyceryl trinitrate (GTN). Function data were analyzed as absolute and percent change from baseline and area under the diameter/time curve. Blood samples were collected before and after supplementation and analyzed for total plasma homocysteine, folate, vitamin B-12 and asymmetric dimethyl arginine (ADMA) in addition to regular measures of hemoglobin, hematocrit, mean corpuscular volume (MCV) and serum creatinine. Results: Folate supplementation significantly increased plasma folate by 687% (p < 0.005) and decreased homocysteine by 37% (p < 0.05) with no changes (p > 0.05) in vitamin B 12 or ADMA. There were no significant (p > 0.05) changes in vascular structure or function during the placebo or the folate supplementation phases; IMT; placebo pre mean +/- SD, 0.52 +/- 0.12, post 0.50 +/- 0.11; folate pre 0.55 +/- 0.17, post 0.49 +/- 10.20 mm 5% change in brachial artery diameter (RH, placebo pre 10 +/- 8, post 6 +/- 5; folate pre 9 +/- 7, post 7 +/- 5; GTN, placebo pre 18 +/- 10, post 17 +/- 9, folate pre 16 +/- 9, post-supplementation 18 +/- 8). Conclusion: Three months of folate supplementation decreases plasma homocysteine but has no effect on endothelial function or carotid artery IMT in RTR.
Resumo:
The objective of this study was to investigate the number of glomerular profiles that are required for accurate estimates of mean profile area in a renal biopsy series. Slides from 384 renal biopsies from one center were reviewed. They contained a median of seven glomerular profiles or of four profiles without sclerosis. Profile areas were measured using stereologic point counting. The true individual mean for each biopsy was calculated and the true population mean for groups of biopsies derived. Individual and population random sample means then were calculated from a random sampling of profiles in each biopsy and were compared with true means for the same biopsies. The effect on the true population means of the entire group of biopsies was also assessed, as the minimum number of glomerular profiles that were required for inclusion was changed. In a single biopsy, random sampling of >= 10 profiles without exclusions and of eight profiles or more without sclerosis reliably estimated the true mean areas. In a group of 30 biopsies, random sampling of five or more glomeruli per biopsy reliably estimated the true population mean. In the aggregate series, inclusion of all 384 biopsies produced the most robust true population mean; the reliability of the estimates decreased as the numbers of eligible biopsies diminished with increasing requisite minimum numbers of profiles per biopsy. We conclude that, while >= 10 profiles might be needed for reliable area estimates in a single biopsy, far fewer profiles per biopsy can suffice when groups of biopsies are studied. In analyses of groups of biopsies, all available biopsies should be used without consideration of the number of glomerular profiles in each. Stipulation of a specific minimum number of glomeruli in each biopsy for inclusion reduces the power of analyses because fewer biopsies are available for evaluation.
Resumo:
Posttransplantation diabetes (PTD) contributes to cardiovascular disease and graft loss in renal transplant recipients (RTR). Current recommendations advise fasting blood glucose (FBG) as the screening and diagnostic test of choice for PTD. This study sought to determine (1) the predictive power of FBG with respect to 2-h blood glucose (2HBG) and (2) the prevalence of PTD using FBG and 2HBG compared with that using FBG alone, in prevalent RTR. A total of 200 RTR (mean age 52 yr; 59% male; median transplant duration 6.6 yr) who were >6 mo posttransplantation and had no known history of diabetes were studied. Patients with FBG
Resumo:
Low-protein diets (