882 resultados para Mutation mitochondrial


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents A beta-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against A beta-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct evidence confirming the hypothesis that a dysfunction of the mitochondrial respiratory chain (MRC) underlies the pathogenesis of hyperlactatemia associated with highly active antiretroviral therapy (HAART) is scarce. We studied mitochondrial DNA (mtDNA) content and MRC function in the skeletal muscle of an HIV-infected patient during an episode of symptomatic hyperlactatemia. Skeletal muscle biopsy was performed during the episode when the patient was symptomatic and 3 months later when the patient was clinically recovered. Assessment of mitochondria was performed using histological, polarographic, spectrophotometrical, and Southern blot and real time PCR DNA quantification methods. The histological study disclosed extensive mitochondrial impairment in the form of ragged-red fibers or equivalents on oxidative reactions. These findings were associated with an increase in mitochondrial content and a decrease in both mitochondrial respiratory capacity and MRC enzyme activities. Mitochondrial DNA content declined to 53% of control values. Mitochondrial abnormalities had almost disappeared later when the patient became asymptomatic. Our findings support the hypothesis that MRC dysfunction stands at the basis of HAART-related hyperlactatemia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To report the clinical and genetic study of a child with bilateral anophthalmia. Methods: A 14-year-old Egyptian boy, born from consanguineous parents, underwent a general and a full ophthalmological examination. Mutation screen of the A/M genes with recessive inheritance was done stepwise and DNA was analyzed by Sanger sequencing. Results: Bilateral anophthalmia, arachnodactyly of the feet and high arched palate were observed on general examination. The parents were first cousins and healthy. Sequencing analysis revealed a novel compound heterozygous mutation in one of the copy of exon 2 of VSX2 and a possible deletion of at least exon 2 on the other allele. Conclusions: A compound heterozygous VSX2 mutation associated with anophthalmia was identified in a patient from an Egyptian consanguineous family. This report brings the number of VSX2 mutation in anophthalmia/microphthalmia (A/M) to 13. Functional consequences of the reported changes still need to be characterized, as well as the percentage of A/M caused by mutations in the VSX2 gene. This family also shows that despite consanguinity, heterozygous mutations can also happen and one should not restrict the molecular analysis to homozygous mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The MOSAIC (Multicenter International Study of Oxaliplatin/Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer) study has demonstrated 3-year disease-free survival (DFS) and 6-year overall survival (OS) benefit of adjuvant oxaliplatin in stage II to III resected colon cancer. This update presents 10-year OS and OS and DFS by mismatch repair (MMR) status and BRAF mutation. METHODS: Survival actualization after 10-year follow-up was performed in 2,246 patients with resected stage II to III colon cancer. We assessed MMR status and BRAF mutation in 1,008 formalin-fixed paraffin-embedded specimens. RESULTS: After a median follow-up of 9.5 years, 10-year OS rates in the bolus/infusional fluorouracil plus leucovorin (LV5FU2) and LV5FU2 plus oxaliplatin (FOLFOX4) arms were 67.1% versus 71.7% (hazard ratio [HR], 0.85; P = .043) in the whole population, 79.5% versus 78.4% for stage II (HR, 1.00; P = .980), and 59.0% versus 67.1% for stage III (HR, 0.80; P = .016) disease. Ninety-five patients (9.4%) had MMR-deficient (dMMR) tumors, and 94 (10.4%) had BRAF mutation. BRAF mutation was not prognostic for OS (P = .965), but dMMR was an independent prognostic factor (HR, 2.02; 95% CI, 1.15 to 3.55; P = .014). HRs for DFS and OS benefit in the FOLFOX4 arm were 0.48 (95% CI, 0.20 to 1.12) and 0.41 (95% CI, 0.16 to 1.07), respectively, in patients with stage II to III dMMR and 0.50 (95% CI, 0.25 to 1.00) and 0.66 (95% CI, 0.31 to 1.42), respectively, in those with BRAF mutation. CONCLUSION: The OS benefit of oxaliplatin-based adjuvant chemotherapy, increasing over time and with the disease severity, was confirmed at 10 years in patients with stage II to III colon cancer. These updated results support the use of FOLFOX in patients with stage III disease, including those with dMMR or BRAF mutation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On a geological time scale the conditions on earth are very variable and biological patterns (for example the distributions of species) are very dynamic. Understanding large scale patterns of variation observed today thus requires a deep understanding of the historical factors that drove their evolution. In this thesis, we reevaluated the evolution and maintenance of a continental color cline observed in the European barn owl (Tyto alba) using population genetic tools. The colour cline spans from south-est Europe where most individual have pure white underparts to north and east Europe where most individuals have rufous-brown underparts. Our results globally showed that the old scenario, stipulating that the color cline evolved by secondary contact of two color morphs (white and rufous) that evolved in allopatry during the last ice age has to be revised. We collected samples of about 700 barn owls from the Western Palearctic to establish the first population genetic data set for this species. Individuals were genotyped at 22 microsatellites markers, at one mitochondrial gene, and at a candidate color gene. The color of each individuals was assessed and their sex determined by molecular methods. We first showed that the genetic variation in Western Europe is very limited compared to the heritable color variation. We found no evidences of different glacial lineages, and showed that selection must be involved in the maintenance of the color cline (chapter 1). Using computer simulations, we demonstrated that the post-glacial colonization of Europe occurred from the Iberian Peninsula and that the color cline could not have evolved by neutral demographic processes during this colonization (chapter 2). Finally we reevaluated the whole history of the establishment of the Western Palearctic variation of the barn owl (chapter 3): This study showed that all Western European barn owls descend from white barn owls phenotypes from the Middle East that colonized the Iberian Peninsula via North-Africa. Following the end of the last ice age (20'000 years ago), these white barn owls colonized Western Europe and under selection a novel rufous phenotype evolved (during or after the colonization). An important part of the color variation could be explained by a single mutation in the melanocortin-1-receptor (MC1R) gene that appeared during or after the colonization. The colonization of Europe reached until Greece, where the rufous birds encountered white ones (which reached Greece from the Middle East over the Bosporus) in a secondary contact zone. Our analyses show that white and rufous barn owls in Greece interbreed only to a limited extent. This suggests that barn owls are at the verge of becoming two species in Greece and demonstrates that European barn owls represent an incipient ring species around the Mediterranean. The revisited history of the establishment of the European barn owl color cline makes this model system remarkable for several aspects. It is a very clear example of strong local adaptation that can be achieved despite high gene flow (strong color and MC1R differentiation despite almost no neutral genetic differentiation). It also offers a wonderful model system to study the interactions between colonization processes and selection processes which have, for now, been remarkably understudied despite their potentially ubiquitous importance. Finally it represents a very interesting case in the speciation continuum and appeals for further studying the amount of gene flow that occurs between the color morphs in Greece. -- Sur l'échelle des temps géologiques, les conditions sur terre sont très variables et les patrons biologiques (telle que la distribution des espèces) sont très dynamiques. Si l'on veut comprendre des patrons que l'on peut observer à large échelle aujourd'hui, il est nécessaire de d'abord comprendre les facteurs historiques qui ont gouverné leur établissement. Dans cette thèse, nous allons réévaluer, grâce à des outils modernes de génétique des populations, l'évolution et la maintenance d'un cline de couleur continental observé chez l'effraie des clochers européenne (Tyto alba). Globalement, nos résultats montrent que le scenario accepté jusqu'à maintenant, qui stipule que le cline de couleur a évolué à partir du contact secondaire de deux morphes de couleur (blanches et rousses) ayant évolué en allopatrie durant les dernières glaciations, est à revoir. Afin de constituer le premier jeu de données de génétique des populations pour cette espèce, nous avons récolté des échantillons d'environ 700 effraies de l'ouest Paléarctique. Nous avons génotypé tous les individus à 22 loci microsatellites, sur un gène mitochondrial et sur un autre gène participant au déterminisme de la couleur. Nous avons aussi mesuré la couleur de tous les individus et déterminé leur sexe génétiquement. Nous avons tout d'abord pu montrer que la variation génétique neutre est négligeable en comparaison avec la variation héritable de couleur, qu'il n'existe qu'une seule lignée européenne et que de la sélection doit être impliquée dans le maintien du cline de couleur (chapitre 1). Grâce à des simulations informatiques, nous avons démontré que l'ensemble de l'Europe de l'ouest a été recolonisé depuis la Péninsule Ibérique après les dernières glaciations et que le cline de couleur ne peut pas avoir évolué par des processus neutre durant cette colonisation (chapitre 2). Finalement, nous avons réévalué l'ensemble de l'histoire postglaciaire de l'espèce dans l'ouest Paléarctique (chapitre 3): l'ensemble des effraies du Paléarctique descendent d'effraie claire du Moyen-Orient qui ont colonisé la péninsule ibérique en passant par l'Afrique du nord. Après la fin de la dernière glaciation (il y a 20'000 ans), ces effraies claires ont colonisé l'Europe de l'ouest et ont évolués par sélection le phénotype roux (durant ou après la colonisation). Une part importante de la variation de couleur peut être expliquée par une mutation sur le gène MC1R qui est apparue durant ou juste après la colonisation. Cette vague de colonisation s'est poursuivie jusqu'en Grèce où ces effraies rousses ont rencontré dans une zone de contact secondaire des effraies claires (qui sont remontées en Grèce depuis le Moyen-Orient via le Bosphore). Nos analyses montrent que le flux de gènes entre effraies blanches et rousses est limité en Grèce, ce qui suggère qu'elles sont en passe de former deux espèces et ce qui montre que les effraies constituent un exemple naissant de spéciation en anneaux autour de la Méditerranée. L'histoire revisitée des effraies des clochers de l'ouest Paléarctique en fait un système modèle remarquable pour plusieurs aspects. C'est un exemple très claire de forte adaptation locale maintenue malgré un fort flux de gènes (différenciation forte de couleur et sur le gène MC1R malgré presque aucune structure neutre). Il offre également un très bon système pour étudier l'interaction entre colonisation et sélection, un thème ayant été remarquablement peu étudié malgré son importance. Et il offre finalement un cas très intéressant dans le « continuum de spéciation » et il serait très intéressant d'étudier plus en détail l'importance du flux de gènes entre les morphes de couleur en Grèce.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (~800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropeptide Y (NPY) is a widely expressed neurotransmitter in the central and peripheral nervous systems. Thymidine 1128 to cytocine substitution in the signal sequence of the preproNPY results in a single amino acid change where leucine is changed to proline. This L7P change leads to a conformational change of the signal sequence which can have an effect on the intracellular processing of NPY. The L7P polymorphism was originally associated with higher total and LDL cholesterol levels in obese subjects. It has also been associated with several other physiological and pathophysiological responses such as atherosclerosis and T2 diabetes. However, the changes on the cellular level due to the preproNPY signal sequence L7P polymorphism were not known. The aims of the current thesis were to study the effects of the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes in primary cultured and genotyped human umbilical vein endothelial cells (HUVEC), in neuroblastoma (SK-N-BE(2)) cells and in fibroblast (CHO-K1) cells. Also, the putative effects of the L7P polymorphism on proliferation, apoptosis and LDL and nitric oxide metabolism were investigated. In the course of the studies a fragment of NPY targeted to mitochondria was found. With the putative mitochondrial NPY fragment the aim was to study the translational preferences and the mobility of the protein. The intracellular distribution of NPY between the [p.L7]+[p.L7] and the [p.L7]+[p.P7] genotypes was found to be different. NPY immunoreactivity was prominent in the [p.L7]+[p.P7] cells while the proNPY immunoreactivity was prominent in the [p.L7]+[p.L7] genotype cells. In the proliferation experiments there was a difference in the [p.L7]+[p.L7] genotype cells between early and late passage (aged) cells; the proliferation was raised in the aged cells. NPY increased the growth of the cells with the [p.L7]+[p.P7] genotype. Apoptosis did not seem to differ between the genotypes, but in the aged cells with the [p.L7]+[p.L7] genotype, LDL uptake was found to be elevated. Furthermore, the genotype seemed to have a strong effect on the nitric oxide metabolism. The results indicated that the mobility of NPY protein inside the cells was increased within the P7 containing constructs. The existence of the mitochondria targeted NPY fragment was verified, and translational preferences were proved to be due to the origin of the cells. Cell of neuronal origin preferred the translation of mature NPY (NPY1-36) when compared to the non neuronal cells that translated both, NPY and the mitochondrial fragment of NPY. The mobility of the mitochondrial fragment was found to be minimal. The functionality of the mitochondrial NPY fragment remains to be investigated. L7P polymorphism in the preproNPY causes a series of intracellular changes. These changes may contribute to the state of cellular senescence, vascular tone and lead to endothelial dysfunction and even to increased susceptibility to diseases, like atherosclerosis and T2 diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial genomes (mitogenomes) are useful and relatively accessible sources of molecular data to explore and understand the evolutionary history and relationships of eukaryotic organisms across diverse taxonomic levels. The availability of complete mitogenomes from Platyhelminthes is limited; of the 40 or so published most are from parasitic flatworms (Neodermata). Here, we present the mitogenomes of two free-living flatworms (Tricladida): the complete genome of the freshwater species Crenobia alpina (Planariidae) and a nearly complete genome of the land planarian Obama sp. (Geoplanidae). Moreover, we have reanotated the published mitogenome of the species Dugesia japonica (Dugesiidae). This contribution almost doubles the total number of mtDNAs published for Tricladida, a species-rich group including model organisms and economically important invasive species. We took the opportunity to conduct comparative mitogenomic analyses between available free-living and selected parasitic flatworms in order to gain insights into the putative effect of life cycle on nucleotide composition through mutation and natural selection. Unexpectedly, we did not find any molecular hallmark of a selective relaxation in mitogenomes of parasitic flatworms; on the contrary, three out of the four studied free-living triclad mitogenomes exhibit higher A+T content and selective relaxation levels. Additionally, we provide new and valuable molecular data to develop markers for future phylogenetic studies on planariids and geoplanids.