925 resultados para Muscle function
Resumo:
Bacterial type III secretion systems deliver protein virulence factors to host cells. Here we characterize the interaction between HrpB2, a small protein secreted by the Xanthomonas citri subsp. citri type III secretion system, and the cytosolic domain of the inner membrane protein HrcU, a paralog of the flagellar protein FlhB. We show that a recombinant fragment corresponding to the C-terminal cytosolic domain of HrcU produced in E. coli suffers cleavage within a conserved Asn264-Pro265-Thr266-His267 (NPTH) sequence. A recombinant HrcU cytosolic domain with N264A, P265A, T266A mutations at the cleavage site (HrcU(AAAH)) was not cleaved and interacted with HrpB2. Furthermore, a polypeptide corresponding to the sequence following the NPTH cleavage site also interacted with HrpB2 indicating that the site for interaction is located after the NPTH site. Non-polar deletion mutants of the hrcU and hrpB2 genes resulted in a total loss of pathogenicity in susceptible citrus plants and disease symptoms could be recovered by expression of HrpB2 and HrcU from extrachromossomal plasmids. Complementation of the Delta hrcU mutant with HrcU(AAAH) produced canker lesions similar to those observed when complemented with wild-type HrcU. HrpB2 secretion however, was significantly reduced in the Delta hrcU mutant complemented with HrcU(AAAH), suggesting that an intact and cleavable NPTH site in HrcU is necessary for total functionally of T3SS in X. citri subsp. citri. Complementation of the Delta hrpB2 X. citri subsp. citri strain with a series of hrpB2 gene mutants revealed that the highly conserved HrpB2 C-terminus is essential for T3SS-dependent development of citrus canker symptoms in planta.
Resumo:
OBJECTIVES: To determine somesthetic, olfactory, gustative and salivary abnormalities in patients with burning mouth syndrome (BMS), idiopathic trigeminal neuralgia (ITN) and trigeminal postherpetic neuralgia (PHN). SUBJECTS AND METHODS: Twenty patients from each group (BMS, ITN, PHN) and 60 healthy controls were evaluated with a systematized quantitative approach of thermal (cold and warm), mechanical, pain, gustation, olfaction and salivary flow; data were analyzed with ANOVA, Tukey, Kruskal Wallis and Dunn tests with a level of significance of 5%. RESULTS: There were no salivary differences among the groups with matched ages; the cold perception was abnormal only at the mandibular branch of PHN (P = 0.001) and warm was abnormal in all trigeminal branches of PHN and BMS; mechanical sensitivity was altered at the mandibular branch of PHN and in all trigeminal branches of BMS. The salty, sweet and olfactory thresholds were higher in all studied groups; the sour threshold was lower and there were no differences of bitter. CONCLUSION: All groups showed abnormal thresholds of gustation and olfaction; somesthetic findings were discrete in ITN and more common in PHN and BMS; central mechanisms of balance of sensorial inputs might be underlying these observations. Oral Diseases (2010) 16, 482-487
Resumo:
The purpose of our study was to compare the effects of 8-week progressive strength and power training regimens on strength gains and muscle plasticity [muscle fiber hypertrophy and phenotype shift, mammalian target of rapamycin (mTOR), regulatory-associated protein of mTOR (RAPTOR), rapamycin-insensitive companion of m-TOR (RICTOR), calcineurin and calcipressin gene expression]. Twenty-nine physically active subjects were divided into three groups: strength training (ST), power training (PT) and control (C). Squat 1 RM and muscle biopsies were obtained before and after the training period. Strength increased similarly for both ST and PT groups (P < 0.001). Fiber types I, IIa and IIb presented hypertrophy main time effect (P < 0.05). Only type IIb percentage decreased from pre- to post-test (main time effect, P < 0.05). mTOR and RICTOR mRNA expression increased similarly from pre- to post-test (P < 0.01). RAPTOR increased after training for both groups (P < 0.0001), but to a greater extent in the ST (P < 0.001) than in the PT group. 4EBP-1 decreased after training when the ST and PT groups were pooled (P < 0.05). Calcineurin levels did not change after training, while calcipressin increased similarly from pre- to post-test (P < 0.01). In conclusion, our data indicate that these training regimens produce similar performance improvements; however, there was a trend toward greater hypertrophy-related gene expression and muscle fiber hypertrophy in the ST group.
Resumo:
In this study we investigated the gene expression of proteins related to myostatin (MSTN) signaling during skeletal muscle longitudinal growth. To promote muscle growth, Wistar male rats were submitted to a stretching protocol for different durations (12, 24, 48, and 96 hours). Following this protocol, soleus weight and length and sarcomere number were determined. In addition, expression levels of the genes that encode MSTN, follistatin isoforms 288 and 315 (FLST288 and FLST315), follistatin-like 3 protein (FLST-L3), growth and differentiation factor-associated protein-1 (GASP-1), activin IIB receptor (ActIIB), and SMAD-7 were determined by real-time polymerase chain reaction. Prolonged stretching increased soleus weight, length, and sarcomere number. In addition, MSTN gene expression was increased at 12-24 hours, followed by a decrease at 96 hours when compared with baseline values. FLST isoforms, FLST-L3, and GASP-1 mRNA levels increased significantly over all time-points. ActIIB gene expression decreased quickly at 12-24 hours. SMAD-7 mRNA levels showed a late increase at 48 hours, which peaked at 96 hours. The gene expression pattern of inhibitory proteins related to MSTN signaling suggests a strong downregulation of this pathway in response to prolonged stretching. Muscle Nerve 40: 992-999, 2009
Resumo:
Background information. DMD (Duchenne muscular dystrophy) is a devastating X-linked disorder characterized by progressive muscle degeneration and weakness. The use of cell therapy for the repair of defective muscle is being pursued as a possible treatment for DMD. Mesenchymal stem cells have the potential to differentiate and display a myogenic phenotype in vitro. Since liposuctioned human fat is available in large quantities, it may be an ideal source of stem cells for therapeutic applications. ASCs (adipose-derived stem cells) are able to restore dystrophin expression in the muscles of mdx (X-linked muscular dystrophy) mice. However, the outcome when these cells interact with human dystrophic muscle is still unknown. Results. We show here that ASCs participate in myotube formation when cultured together with differentiating human DMD myoblasts, resulting in the restoration of dystrophin expression. Similarly, dystrophin was induced when ASCs were co-cultivated with DMD myotubes. Experiments with GFP (green fluorescent protein)-positive ASCs and DAPI (4,6-diamidino-2-phenylindole)-stained DMD myoblasts indicated that ASCs participate in human myogenesis through cellular fusion. Conclusions. These results show that ASCs have the potential to interact with dystrophic muscle cells, restoring dystrophin expression of DMD cells in vitro. The possibility of using adipose tissue as a source of stem cell therapies for muscular diseases is extremely exciting.
Resumo:
This study compared four different intensities of a bench press exercise for muscle soreness, creatine kinase activity, interleukin (IL)-1, IL-6, tumor necrosis factor- (TNF-), and prostaglandin E2 (PGE2) concentrations in the blood. Thirty-five male Brazilian Army soldiers were randomly assigned to one of five groups: 50% one-repetition maximum (1-RM), 75% 1-RM, 90% 1-RM, 110% 1-RM, and a control group that did not perform the exercise. The total volume (setsrepetitionsload) of the exercise was matched among the exercise groups. Muscle soreness and plasma creatine kinase activity increased markedly (P0.05) after exercise, with no significant differences among the groups. Serum PGE2 concentration also increased markedly (P0.05) after exercise, with a significantly (P0.05) greater increase in the 110% 1-RM group compared with the other groups. A weak but significant (P0.05) correlation was found between peak muscle soreness and peak PGE2 concentration, but no significant correlation was evident between peak muscle soreness and peak creatine kinase activity, or peak creatine kinase activity and peak PGE2 concentration. All groups showed no changes in IL-1, IL-6 or TNF-. Our results suggest that the intensity of bench press exercise does not affect the magnitude of muscle soreness and blood markers of muscle damage and inflammation.
Resumo:
It has been suggested that muscle tension plays a major role in the activation of intracellular pathways for skeletal muscle hypertrophy via an increase in mechano growth factor (MGF) and other downstream targets. Eccentric exercise (EE) imposes a greater amount of tension on the active muscle. In particular, high-speed EE seems to exert an additional effect on muscle tension and, thus, on muscle hypertrophy. However, little is known about the effect of EE velocity on hypertrophy signaling. This study investigated the effect of acute EE-velocity manipulation on the Akt/mTORCI/p70(S6K) hypertrophy pathway. Twenty subjects were assigned to either a slow (20 degrees.s(-1); ES) or fast EE (210 degrees.s(-1); EF) group. Biopsies were taken from vastus lateralis at baseline (B), immediately after (T1), and 2 h after (T2) the completion of 5 sets of 8 repetitions of eccentric knee extensions. Akt, mTOR, and p70(S6K) total protein were similar between groups, and did not change postintervention. Further, Akt and p70(S6K) protein phosphorylation were higher at T2 than at B for ES and EF. MGF messenger RNA was similar between groups, and only significantly higher at T2 than at B in ES. The acute manipulation of EE velocity does not seem to differently influence intracellular hypertrophy signaling through the Akt/mTORCI/p70S6K pathway.
Resumo:
The aim of this study was to assess the effect of leucine supplementation on elements of the ubiquitin proteasome system (UPS) in rat skeletal muscle during immobilization. This effect was evaluated by submitting the animals to a leucine supplementation protocol during hindlimb immobilization, after which different parameters were determined, including: muscle mass; cross-sectional area (CSA); gene expression of E3 ligases/deubiquitinating enzymes; content of ubiquitinated proteins; and rate of protein synthesis. Our results show that leucine supplementation attenuates soleus muscle mass loss driven by immobilization. In addition, the marked decrease in the CSA in soleus muscle type I fibers, but not type II fibers, induced by immobilization was minimized by leucine feeding. Interestingly, leucine supplementation severely minimized the early transient increase in E3 ligase [muscle ring finger 1 (MuRF1) and muscle atrophy F-box (MAFbx)/atrogin-1] gene expression observed during immobilization. The reduced peak of E3 ligase gene expression was paralleled by a decreased content of ubiquitinated proteins during leucine feeding. The protein synthesis rate decreased by immobilization and was not affected by leucine supplementation. Our results strongly suggest that leucine supplementation attenuates muscle wasting induced by immobilization via minimizing gene expression of E3 ligases, which consequently could downregulate UPS-driven protein degradation. It is notable that leucine supplementation does not restore decreased protein synthesis driven by immobilization. Muscle Nerve 41: 800-808, 2010
Resumo:
Aim. To compare the measurements of women`s pelvic floor musculature strength (PFMS) during pregnancy and postpartum period. Background. Pregnancy and childbirth can have an influence on the muscles and pelvic floor and can cause morbidities of women`s genito-urinary tract. Design. A prospective cohort study. Methods. There were included 226 primigravidae women, attended by community health services in the city of Itapecerica da Serra, Sao Paulo, Brazil. The participants were followed in four stages: (1) within 12 weeks of pregnancy; (2) between 36-40 weeks of pregnancy; (3) within 48 hours after childbirth; (4) 42-60 days after childbirth. Data were collected from February 2007-August 2008. The pelvic floor musculature strength was evaluated by perineometry and digital vaginal palpation in stages 1, 2 and 4. The final sample included 110 women who completed all four stages of the study. Results. The pelvic floor musculature strength of the women did not change significantly during pregnancy or after delivery (anova: p = 0 center dot 78). In all three examined stages, a low-intensity pelvic floor musculature strength was prevalent (in mmHg: stage 1 = 15 center dot 9; stage 2 = 15 center dot 2, stage 4 = 14 center dot 7), with scores from 0-3 on the Oxford scale. The pelvic floor musculature strength did not differ in relation to maternal age, skin colour, conjugal status, dyspareunia, stool characteristics, type of delivery, or conditions of the perineum. An interaction between maternal nutritional state and newborn`s weight may affect the pelvic floor musculature strength (manova: p = 0 center dot 04). Conclusion. Pregnancy and childbirth did not reduce significantly pelvic floor musculature strength. The perineometry and digital vaginal palpation used to assess the pelvic floor musculature strength were well accepted by the women. Relevance to clinical practice. In clinical practice, digital vaginal palpation is effective for supporting the diagnosis of urinary, intestinal and sexual dysfunctions. Perineometry use is particularly important together with the performance of perineal exercises with biofeedback in the treatment these disorders.
Resumo:
Aims: The clinical benefits of angiotensin II type 1 (AT1) receptor blockers (ARB) in heart failure (HF) include cardiac anti-remodeling and improved ventricular function. However, the cellular mechanisms underlying the benefits of ARB on ventricular function need to be better clarified. In the present manuscript, we evaluated the effects of AT1 receptor blockade on the net balance of Ca(2+) handling proteins in hearts of mice lacking alpha(2A) and alpha(2C) adrenoceptors (alpha(2A)/alpha(2C)ARKO), which develop sympathetic hyperactivity (SH) induced-HF. Main methods: A cohort of male wild-type (WT) and congenic alpha(2A)/alpha(2C)ARKO mice in a C57BL6/J genetic background (5-7 mo of age) was randomly assigned to receive either placebo or ARB (Losartan, 10 mg/kg for 8wks). Ventricular function (VF) was assessed by echocardiography, and cardiac myocyte width and ventricular fibrosis by a computer-assisted morphometric system. Sarcoplasmic reticulum Ca(2+) ATPase (SERCA2), phospholamban (PLN), phospho-Ser(16)-PLN, phospho-Thr(17)-PLN, phosphatase 1 (PP1), Na(+)-Ca(2+) exchanger (NCX), Ca(2+)/calmodulin-dependent protein kinase 11 (CaMKII) and phospho-Thr(286)-CaMKII were analyzed by Western blot. Key findings: alpha(2A)/alpha(2C)ARKO mice displayed ventricular dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis paralleled by decreased SERCA2 and increased phospho-Thr(17)-PLN, CaMKII, phospho-Thr(286)-CaMKII and NCX levels. ARB induced anti-cardiac remodeling effect and improved VF in alpha(2A)/alpha(2C)ARKO associated with increased SERCA2 and phospho-Ser(16)-PLN levels, and SERCA2:NCX ratio. Additionally, ARB decreased phospho-Thr(17)-PLN levels as well as reestablished NCX, CaMKII and phospho-Thr(286)-CaMKII toward WT levels. Significance: Altogether, these data provide new insights on intracellular Ca(2+) regulatory mechanisms underlying improved ventricular function by ARB therapy in HF. (c) 2011 Elsevier Inc. All rights reserved.
Resumo:
ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
Resumo:
Exercise training is known to promote relevant changes in the properties of skeletal muscle contractility toward powerful fibers. However, there are few studies showing the effect of a well-established exercise training protocol on Ca(2+) handling and redox status in skeletal muscles with different fiber-type compositions. We have previously standardized a valid and reliable protocol to improve endurance exercise capacity in mice based on maximal lactate steady-state workload (MLSSw). The aim of this study was to investigate the effect of exercise training, performed at MLSSw, on the skeletal muscle Ca(2+) handling-related protein levels and cellular redox status in soleus and plantaris. Male C57BL/6J mice performed treadmill training at MLSSw over a period of eight weeks. Muscle fiber-typing was determined by myosin ATPase histochemistry, citrate synthase activity by spectrophotometric assay, Ca(2+) handling-related protein levels by Western blot and reduced to oxidized glutathione ratio (GSH:GSSG) by high-performance liquid chromatography. Trained mice displayed higher running performance and citrate synthase activity compared with untrained mice. Improved running performance in trained mice was paralleled by fast-to-slow fiber-type shift and increased capillary density in both plantaris and soleus. Exercise training increased dihydropyridine receptor (DHPR) alpha 2 subunit, ryanodine receptor and Na(+)/Ca(2+) exchanger levels in plantaris and soleus. Moreover, exercise training elevated DHPR beta 1 subunit and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) 1 levels in plantaris and SERCA2 levels in soleus of trained mice. Skeletal muscle GSH content and GSH:GSSG ratio was increased in plantaris and soleus of trained mice. Taken together, our findings indicate that MLSSw exercise-induced better running performance is, in part, due to increased levels of proteins involved in skeletal muscle Ca(2+) handling, whereas this response is partially dependent on specificity of skeletal muscle fiber-type composition. Finally, we demonstrated an augmented cellular redox status and GSH antioxidant capacity in trained mice.
Resumo:
Prolonged standing has been associated with the onset of low back pain symptoms in working populations. So far, it is unknown how individuals with chronic low back pain (CLBP) behave during prolonged unconstrained standing (PS). The aim of the present study was to analyze the control of posture by subjects with CLBP during PS in comparison to matched healthy adults. The center of pressure (COP) position of 12 CLBP subjects and 12 matched healthy controls was recorded in prolonged standing (30 min) and quiet stance tasks (60 s) on a force plate. The number and amplitude of COP patterns, the root mean square (RMS), speed, and frequency of COP sway were analyzed. Statistical analyses showed that CLBP subjects produced less Postural changes in the antero-posterior direction with decreased postural sway during the prolonged standing task in comparison to the healthy group. Only CLBP subjects were influenced by the prolonged standing task, as demonstrated by their increased COP RMS, COP speed and COP frequency in the quiet standing trial after the prolonged standing task in comparison to the pre-PS trial. The present study provides additional evidence that individuals with CLBP might have altered sensory-motor function. Their inability to generate responses similar to those of healthy subjects during prolonged standing may contribute to CLBP persistence or an increase risk of recurrent back pain episodes. Moreover, quantification of postural changes during prolonged standing could be useful to identify CLBP subjects prone to postural control deficits. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Myocardial infarction (MI) has been associated with increases in reactive oxygen species (ROS). Exercise training (ET) has been shown to exert positive modulations on vascular function and the purpose of the present study was to investigate the effect of moderate ET on the aortic superoxide production index, NAD(P)H oxidase activity, superoxide dismutase activity and vasomotor response in MI rats. Aerobic ET was performed during 11 weeks. Myocardial infarction significantly diminished maximal exercise capacity, and increased vasoconstrictory response to norepinephrine, which was related to the increased activity of NAD(P)H oxidase and basal superoxide production. On the other hand, ET normalized the superoxide production mostly due to decreased NAD(P)H oxidase activity, although a minor SOD effect may also be present. These adaptations were paralleled by normalization in the vasoconstrictory response to norepinephrine. Thus, diminished ROS production seems to be an important mechanism by which ET mediates its beneficial vascular effects in the MI condition.
Resumo:
Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of disorders characterized by progressive degeneration of skeletal muscle caused by the absence of or defective muscular proteins. The murine model for limb-girdle muscular dystrophy 2B (LGMD2B), the SJL mice, carries a deletion in the dysferlin gene that causes a reduction in the protein levels to 15% of normal. The mice show muscle weakness that begins at 4-6 weeks and is nearly complete by 8 months of age. The possibility of restoring the defective muscle protein and improving muscular performance by cell therapy is a promising approach for the treatment of LGMDs or other forms of progressive muscular dystrophies. Here we have injected human adipose stromal cells (hASCs) into the SJL mice, without immunosuppression, aiming to assess their ability to engraft into recipient dystrophic muscle after systemic delivery; form chimeric human/mouse muscle fibers; express human muscle proteins in the dystrophic host and improve muscular performance. We show for the first time that hASCs are not rejected after systemic injection even without immunosuppression, are able to fuse with the host muscle, express a significant amount of human muscle proteins, and improve motor ability of injected animals. These results may have important applications for future therapy in patients with different forms of muscular dystrophies.