988 resultados para Muscle Dysfunction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To assess the effect of intestinal manipulation and mesenteric traction on gastro-intestinal function and postoperative recovery in patients undergoing abdominal aortic aneurysm (AAA) repair. Methods: Thirty-five patients undergoing AAA repair were randomised into 3 groups. Group I (n = II) had repair via retroperitoneal approach while Group II (n = 12) and Group III (n = 12) were repaired via transperitoneal approach with bowel packed within the peritoneal cavity or exteriorised in a bowel bag respectively. Gastric emptying was measured pre-operatively (day 0), day 1 and day 3 using paracetamol absorption test (PAT) and area under curve (P-AUC) was calculated. Intestinal permeability was measured using the Lactulose-Mannitol test. Results: Aneurysm size, operation time and PAT (on day 0 and day 3) were similar in the three groups. On day 1, the P-AUC was significantly higher in Group I, when compared with Group II and Group III (P = .02). Resumption of diet was also significantly earlier in Group I as compared to Group II and Group III. The intestinal permeability was significantly increased in Group II and Group III at day 1 when compared with day 0, with no significant increase in Group I. Retroperitoneal repair was also associated with significantly shorter intensive care unit (P = .04) and hospital stay (P = .047), when compared with the combined transperitoneal repair group (Group II and III). Conclusion: Retroperitoneal AAA repair minimises intestinal dysfunction and may lead to quicker patient recovery when compared to transperitoneal repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive studies on bradykinin-related peptides (BRPs) generated from plasma kininogens in representative species of various vertebrate taxa, have confirmed that many amphibian skin BRPs reflect those present in putative vertebrate predators. For example, the (Val1, Thr6)-bradykinin, present in the defensive skin secretions of many ranids and phyllomedusines, can be generated from plasma kininogens in colubrid snakes - common predators of these frogs. Here, we report the presence of (Arg0, Trp5, Leu8)-bradykinin in the skin secretion of the European edible frog, Pelophylax kl. esculentus, and have found it to be encoded in single copy by a kininogen with an open-reading frame of 68 amino acid residues. This peptide is the archetypal bony fish bradykinin that has been generated from plasma kininogens of the bowfin (Amia calva), the long-nosed gar (Lepisosteus oseus) and the rainbow trout (Onchorhynchus mykiss). More recently, this peptide has been shown to be encoded within cloned kininogens of the Atlantic cod (Gadus morhua) spotted wolf-fish (Anarichas minor), zebrafish (Danio rerio), pufferfish (Tetraodon nigroviridis) and Northern pike (Esox lucius). The latter species is regarded as a major predator of P. kl. esculentus. Synthetic (Arg0, Trp5, Leu8)-bradykinin was previously reported as having multiphasic effects on arterial blood pressure in conscious trout and here we have demonstrated that it can antagonize the relaxation in rat arterial smooth muscle induced by canonical mammalian bradykinin. The discovery of (Arg0, Trp5, Leu8)-bradykinin in the defensive skin secretion of this amphibian completes the spectrum of vertebrate taxon-specific BRPs identified from this source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schistosomes are amongst the most important and neglected pathogens in the world, and schistosomiasis control relies almost exclusively on a single drug. The neuromuscular system of schistosomes is fertile ground for therapeutic intervention, yet the details of physiological events involved in neuromuscular function remain largely unknown. Short amidated neuropeptides, FMRFamide-like peptides (FLPs), are distributed abundantly throughout the nervous system of every flatworm examined and they produce potent myoexcitation. Our goal here was to determine the mechanism by which FLPs elicit contractions of schistosome muscle fibers. Contraction studies showed that the FLP Tyr-Ile-Arg-Phe-amide (YIRFamide) contracts the muscle fibers through a mechanism that requires Ca2+ influx through sarcolemmal voltage operated Ca2+ channels (VOCCs), as the contractions are inhibited by classical VOCC blockers nicardipine, verapamil and methoxyverapamil. Whole-cell patch-clamp experiments revealed that inward currents through VOCCs are significantly and reversibly enhanced by the application of 1 µM YIRFamide; the sustained inward currents were increased to 190% of controls and the peak currents were increased to 180%. In order to examine the biochemical link between the FLP receptor and the VOCCs, PKC inhibitors calphostin C, RO 31–8220 and chelerythrine were tested and all produced concentration dependent block of the contractions elicited by 1 µM YIRFamide. Taken together, the data show that FLPs elicit contractions by enhancing Ca2+ influx through VOCC currents using a PKC-dependent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic use of chloroquine has been shown to induce numerous pathophysiological defects in the retina. This drug has the ability to alter pH of intracellular compartments and lysosomal function of the retinal pigment epithelium (RPE) and retinal neurons may constitute the basis of chloroquine retinopathy. The aim of the current study was to investigate pathogenic alterations in retinal cells continuously exposed to chloroquine using appropriate in vivo and in vitro models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Critically ill patients are at heightened risk for nosocomial infections. The anaphylatoxin C5a impairs phagocytosis by neutrophils. However, the mechanisms by which this occurs and the relevance for acquisition of nosocomial infection remain undetermined. We aimed to characterize mechanisms by which C5a inhibits phagocytosis in vitro and in critically ill patients, and to define the relationship between C5a-mediated dysfunction and acquisition of nosocomial infection. In healthy human neutrophils, C5a significantly inhibited RhoA activation, preventing actin polymerization and phagocytosis. RhoA inhibition was mediated by PI3Kd. The effects on RhoA, actin, and phagocytosis were fully reversed by GM-CSF. Parallel observations were made in neutrophils from critically ill patients, that is, impaired phagocytosis was associated with inhibition of RhoA and actin polymerization, and reversed by GM-CSF. Among a cohort of 60 critically ill patients, C5a-mediated neutrophil dysfunction (as determined by reduced CD88 expression) was a strong predictor for subsequent acquisition of nosocomial infection (relative risk, 5.8; 95% confidence interval, 1.5-22; P = .0007), and remained independent of time effects as assessed by survival analysis (hazard ratio, 5.0; 95% confidence interval, 1.3-8.3; P = .01). In conclusion, this study provides new insight into the mechanisms underlying immunocompromise in critical illness and suggests novel avenues for therapy and prevention of nosocomial infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pulmonary fluid clearance is regulated by the active transport of Na+ and Cl- through respiratory epithelial ion channels. Ion channel dysfunction contributes to the pathogenesis of various pulmonary fluid disorders including high-altitude pulmonary edema (HAPE) and neonatal respiratory distress syndrome (RDS). Nasal potential difference (NPD) measurement allows an in vivo investigation of the functionality of these channels. This technique has been used for the diagnosis of cystic fibrosis, the archetypal respiratory ion channel disorder, for over a quarter of a century. NPD measurements in HAPE and RDS suggest constitutive and acquired dysfunction of respiratory epithelial Na+ channels. Acute lung injury (ALI) is characterized by pulmonary edema due to alveolar epithelial-interstitial-endothelial injury. NPD measurement may enable identification of critically ill ALI patients with a susceptible phenotype of dysfunctional respiratory Na+ channels and allow targeted therapy toward Na+ channel function. text of link

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: The impact of AGEs and advanced lipoxidation end-products (ALEs) on neuronal and Müller glial dysfunction in the diabetic retina is not well understood. We therefore sought to identify dysfunction of the retinal Müller glia during diabetes and to determine whether inhibition of AGEs/ALEs can prevent it.

Methods: Sprague-Dawley rats were divided into three groups: (1) non-diabetic; (2) untreated streptozotocin-induced diabetic; and (3) diabetic treated with the AGE/ALE inhibitor pyridoxamine for the duration of diabetes. Rats were killed and their retinas were evaluated for neuroglial pathology. Results: AGEs and ALEs accumulated at higher levels in diabetic retinas than in controls (p<0.001). AGE/ALE immunoreactivity was significantly diminished by pyridoxamine treatment of diabetic rats. Diabetes was also associated with the up-regulation of the oxidative stress marker haemoxygenase-1 and the induction of glial fibrillary acidic protein production in Müller glia (p<0.001). Pyridoxamine treatment of diabetic rats had a significant beneficial effect on both variables (p<0.001). Diabetes also significantly altered the normal localisation of the potassium inwardly rectifying channel Kir4.1 and the water channel aquaporin 4 to the Müller glia end-feet interacting with retinal capillaries. These abnormalities were prevented by pyridoxamine treatment.

Conclusions/interpretation: While it is established that AGE/ALE formation in the retina during diabetes is linked to microvascular dysfunction, this study suggests that these pathogenic adducts also play a role in Müller glial dysfunction.