985 resultados para Multiple Programming
Resumo:
Ten different tRNAGly1 genes from the silk worm, Bombyx mori, have been cloned and characterized. These genes were transcribed in vitro in homologous nuclear extracts from the posterior silk gland (PSG) or nuclear extracts derived from the middle silk gland or ovarian tissues. Although the transcription levels were much higher in the PSG nuclear extracts, the transcriptional efficiency of the individual genes followed a similar pattern in all the extracts. Based on the levels of in vitro transcription, the ten tRNAGly1 genes could be divided into three groups, viz., those which were transcribed at very high levels (e.g., clone pR8), high to medium levels (e.g., pBmil, pBmpl, pBmhl, pBmtl) and low to barely detectable levels (e.g., pBmsl, pBmjl and pBmkl). The coding sequences of all these tRNA genes being identical, the differential transcription suggested that the flanking sequences modulate their transcriptional efficiency. The presence of positive and negative regulatory elements in the 5' flanking regions of these genes was confirmed by transcription competition experiments. A positive element was present in the immediate upstream A + T-rich sequences in all the genes, but no consensus sequences correlating to the transcriptional status could be generated. The presence of negative elements on the other hand was indicated only in some of the genes and therefore may have a role in the differential transcription of these tRNAGly genes in vivo.
Resumo:
We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.
Resumo:
A procedure to evaluate surface-to-air missile battery placement patterns for air defense is presented. A measure of defense effectiveness is defined as a function of kill probability of the defense missiles and the nature of the surrounding terrain features. The concept of cumulative danger index is used to select the best path for a penetrating hostile aircraft for any given pattern of placement. The aircraft is assumed to be intelligent and well-informed. The path is generated using a dynamic programming methodology. The software package so developed can be used off-line to choose the best among a number of possible battery placement patterns.
Resumo:
A general procedure for arriving at 3-D models of disulphiderich olypeptide systems based on the covalent cross-link constraints has been developed. The procedure, which has been coded as a computer program, RANMOD, assigns a large number of random, permitted backbone conformations to the polypeptide and identifies stereochemically acceptable structures as plausible models based on strainless disulphide bridge modelling. Disulphide bond modelling is performed using the procedure MODIP developed earlier, in connection with the choice of suitable sites where disulphide bonds could be engineered in proteins (Sowdhamini,R., Srinivasan,N., Shoichet,B., Santi,D.V., Ramakrishnan,C. and Balaram,P. (1989) Protein Engng, 3, 95-103). The method RANMOD has been tested on small disulphide loops and the structures compared against preferred backbone conformations derived from an analysis of putative disulphide subdatabase and model calculations. RANMOD has been applied to disulphiderich peptides and found to give rise to several stereochemically acceptable structures. The results obtained on the modelling of two test cases, a-conotoxin GI and endothelin I, are presented. Available NMR data suggest that such small systems exhibit conformational heterogeneity in solution. Hence, this approach for obtaining several distinct models is particularly attractive for the study of conformational excursions.
Resumo:
The accuracy of the initiator tRNA (tRNA(fMet)) selection in the ribosomal P-site is central to the fidelity of protein synthesis. A highly conserved occurrence of three consecutive G-C base pairs in the anticodon stem of tRNA(fMet) contributes to its preferential selection in the P-site. In a genetic screen, using a plasmid borne copy of an inactive tRNA(fMet) mutant wherein the three G-C base pairs were changed, we isolated Escherichia coli strains that allow efficient initiation with the tRNA(fMet) mutant. Here, extensive characterization of two such strains revealed novel mutations in the metZWV promoter severely compromising tRNA(fMet) levels. Low cellular abundance of the chromosomally encoded tRNA(fMet) allows efficient initiation with the tRNA(fMet) mutant and an elongator tRNA(Gln), revealing that a high abundance of the cellular tRNA(fMet) is crucial for the fidelity of initiator tRNA selection on the ribosomal P-site in E. coli. We discuss possible implications of the changes in the cellular tRNA(fMet) abundance in proteome remodeling.
Resumo:
The details of the first total synthesis of a natural thapsane lg containing three contiguous quaternary carbon atoms, starting from cyclogeraniol (9) '5 described. The Claisen rearrangement of 9 with methoxypropene in the presence of a catalytic amount of propionic acid produced ketone 10. Rhodium acetate-catalyzed intramolecular cyclopropanation of a-diazo-&keto ester 12, obtained from 10 via 8-keto ester 8, furnished cyclopropyl keto ester 7. Lithium in liquid ammonia reductive cleavage of cyclopropyl compound 7 gave a 1:l mixture of hydrindanone 6 and keto1 13. Wittig methylenation of 6 furnished ester 21. Epoxidation of 21, followed by BF3-OEt2-catalyzed rearrangement of epoxide 23 afforded hemiacetal 25. Treatment of hemiacetal 25 with triethylsilane in trifluoroacetic acid furnished lactone 22, a degradation product of various thapsanes. Finally, DIBAH reduction of lactone 22 generated the thapsane
Resumo:
Whether HIV-1 evolution in infected individuals is dominated by deterministic or stochastic effects remains unclear because current estimates of the effective population size of HIV-1 in vivo, N-e, are widely varying. Models assuming HIV-1 evolution to be neutral estimate N-e similar to 10(2)-10(4), smaller than the inverse mutation rate of HIV-1 (similar to 10(5)), implying the predominance of stochastic forces. In contrast, a model that includes selection estimates N-e>10(5), suggesting that deterministic forces would hold sway. The consequent uncertainty in the nature of HIV-1 evolution compromises our ability to describe disease progression and outcomes of therapy. We perform detailed bit-string simulations of viral evolution that consider large genome lengths and incorporate the key evolutionary processes underlying the genomic diversification of HIV-1 in infected individuals, namely, mutation, multiple infections of cells, recombination, selection, and epistatic interactions between multiple loci. Our simulations describe quantitatively the evolution of HIV-1 diversity and divergence in patients. From comparisons of our simulations with patient data, we estimate N-e similar to 10(3)-10(4), implying predominantly stochastic evolution. Interestingly, we find that N-e and the viral generation time are correlated with the disease progression time, presenting a route to a priori prediction of disease progression in patients. Further, we show that the previous estimate of N-e>10(5) reduces as the frequencies of multiple infections of cells and recombination assumed increase. Our simulations with N-e similar to 10(3)-10(4) may be employed to estimate markers of disease progression and outcomes of therapy that depend on the evolution of viral diversity and divergence.
Resumo:
The omega(1)-heterodecoupled-C-13-filtered proton detected NMR experiments are reported for the accurate quantification of enantiomeric excess in chiral molecules embedded in chiral liquid crystal. The differential values of both H-1-H-1 and C-13-H-1 dipolar couplings in the direct dimension and only H-1-H-1 dipolar couplings in the indirect dimension enable unraveling of overlapped enantiomeric peaks. The creation of unequal C-13-bound proton signal for each enantiomer in the INEPT block and non-uniform excitation of coherences in homonuclear multiple quantum experiments do not yield accurate quantification of enantiomeric excess. In circumventing these difficulties, a coupling dependent intensity correction factor has been invoked. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A novel approach for simultaneous measurement of chirp (any parameter that can induce strain gradient on FBG) and temperature using a single FBG is proposed. Change in reflectivity at central wavelength of FBG reflection & Bragg wavelength shifts induced due to temperature were used for chirp & temperature measurements respectively. Theoretical resolution limit for chirp and temperature using an Optical Spectrum Analyzer (OSA) with 1pm wavelength resolution and >58dB dynamic range are 12.8fm and 1/13 degrees C respectively.
Resumo:
In a typical sensor network scenario a goal is to monitor a spatio-temporal process through a number of inexpensive sensing nodes, the key parameter being the fidelity at which the process has to be estimated at distant locations. We study such a scenario in which multiple encoders transmit their correlated data at finite rates to a distant, common decoder over a discrete time multiple access channel under various side information assumptions. In particular, we derive an achievable rate region for this communication problem.
Resumo:
Multiple UAVs are deployed to carry out a search and destroy mission in a bounded region. The UAVs have limited sensor range and can carry limited resources which reduce with use. The UAVs perform a search task to detect targets. When a target is detected which requires different type and quantities of resources to completely destroy, then a team of UAVs called as a coalition is formed to attack the target. The coalition members have to modify their route to attack the target, in the process, the search task is affected, as search and destroy tasks are coupled. The performance of the mission is a function of the search and the task allocation strategies. Therefore, for a given task allocation strategy, we need to devise search strategies that are efficient. In this paper, we propose three different search strategies namely; random search strategy, lanes based search strategy and grid based search strategy and analyze their performance through Monte-Carlo simulations. The results show that the grid based search strategy performs the best but with high information overhead.
Resumo:
Constellation Constrained (CC) capacity regions of two-user Single-Input Single-Output (SISO) Gaussian Multiple Access Channels (GMAC) are computed for several Non-Orthogonal Multiple Access schemes (NO-MA) and Orthogonal Multiple Access schemes (O-MA). For NO-MA schemes, a metric is proposed to compute the angle(s) of rotation between the input constellations such that the CC capacity regions are maximally enlarged. Further, code pairs based on Trellis Coded Modulation (TCM) are designed with PSK constellation pairs and PAM constellation pairs such that any rate pair within the CC capacity region can be approached. Such a NO-MA scheme which employs CC capacity approaching trellis codes is referred to as Trellis Coded Multiple Access (TCMA). Then, CC capacity regions of O-MA schemes such as Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) are also computed and it is shown that, unlike the Gaussian distributed continuous constellations case, the CC capacity regions with FDMA are strictly contained inside the CC capacity regions with TCMA. Hence, for finite constellations, a NO-MA scheme such as TCMA is better than FDMA and TDMA which makes NO-MA schemes worth pursuing in practice for two-user GMAC. Then, the idea of introducing rotations between the input constellations is used to construct Space-Time Block Code (STBC) pairs for two-user Multiple-Input Single-Output (MISO) fading MAC. The proposed STBCs are shown to have reduced Maximum Likelihood (ML) decoding complexity and information-losslessness property. Finally, STBC pairs with reduced sphere decoding complexity are proposed for two-user Multiple-Input Multiple-Output (MIMO) fading MAC.
Resumo:
The problem of structural system identification when measurements originate from multiple tests and multiple sensors is considered. An offline solution to this problem using bootstrap particle filtering is proposed. The central idea of the proposed method is the introduction of a dummy independent variable that allows for simultaneous assimilation of multiple measurements in a sequential manner. The method can treat linear/nonlinear structural models and allows for measurements on strains and displacements under static/dynamic loads. Illustrative examples consider measurement data from numerical models and also from laboratory experiments. The results from the proposed method are compared with those from a Kalman filter-based approach and the superior performance of the proposed method is demonstrated. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Payment systems all over the world have grown into a complicated web of solutions. This is more challenging in the case of mobile based payment systems. Mobile based payment systems are many and consist of different technologies providing different services. The diffusion of these various technologies in a market is uncertain. Diffusion theorists, for example Rogers, and Davis suggest how innovation is accepted in markets. In the case of electronic payment systems, the tale of Mondex vs Octopus throws interesting insights on diffusion. Our paper attempts to understand the success potential of various mobile payment technologies. We illustrate what we describe as technology breadth in mobile payment systems using data from payment systems all over the world (n=62). Our data shows an unexpected superiority of SMS technology, over other technologies like NFC, WAP and others. We also used a Delphi based survey (n=5) with experts to address the possibility that SMS will gain superiority in market diffusion. The economic conditions of a country, particularly in developing countries, the services availed and characteristics of the user (for example number of un-banked users in large populated countries) may put SMS in the forefront. This may be true more for micro payments using the mobile.