598 resultados para Multilayer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The migratory endoparasitic nematode Bursaphelenchus xylophilus, which is the causal agent of pine wilt disease, has phytophagous and mycetophagous phases during its life cycle. This highly unusual feature distinguishes it from other plantparasitic nematodes and requires profound changes in biology between modes. During the phytophagous stage, the nematode migrates within pine trees, feeding on the contents of parenchymal cells. Like other plant pathogens, B. xylophilus secretes effectors from pharyngeal gland cells into the host during infection.We provide the first description of changes in the morphology of these gland cells between juvenile and adult life stages. Using a comparative transcriptomics approach and an effector identification pipeline, we identify numerous novel parasitism genes which may be important for the mediation of interactions of B. xylophilus with its host. In-depth characterization of all parasitism genes using in situ hybridization reveals two major categories of detoxification proteins, those specifically expressed in either the pharyngeal gland cells or the digestive system. These data suggest that B. xylophilus incorporates effectors in a multilayer detoxification strategy in order to protect itself from host defence responses during phytophagy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since last century, the rising interest of value-added and advanced functional materials has spurred a ceaseless development in terms of industrial processes and applications. Among the emerging technologies, thanks to their unique features and versatility in terms of supported processes, non-equilibrium plasma discharges appear as a key solvent-free, high-throughput and cost-efficient technique. Nevertheless, applied research studies are needed with the aim of addressing plasma potentialities optimizing devices and processes for future industrial applications. In this framework, the aim of this dissertation is to report on the activities carried out and the results achieved concerning the development and optimization of plasma techniques for nanomaterial synthesis and processing to be applied in the biomedical field. In the first section, the design and investigation of a plasma assisted process for the production of silver (Ag) nanostructured multilayer coatings exhibiting anti-biofilm and anti-clot properties is described. With the aim on enabling in-situ and on-demand deposition of Ag nanoparticles (NPs), the optimization of a continuous in-flight aerosol process for particle synthesis is reported. The stability and promising biological performances of deposited coatings spurred further investigation through in-vitro and in-vivo tests which results are reported and discussed. With the aim of addressing the unanswered questions and tuning NPs functionalities, the second section concerns the study of silver containing droplet conversion in a flow-through plasma reactor. The presented results, obtained combining different analysis techniques, support a formation mechanism based on droplet to particle conversion driven by plasma induced precursor reduction. Finally, the third section deals with the development of a simulative and experimental approach used to investigate the in-situ droplet evaporation inside the plasma discharge addressing the main contributions to liquid evaporation in the perspective of process industrial scale up.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental problems caused by human activity are one of the main themes of debate of the last Century. As regard plastics, the use of non-renewable sources together with the accumulation of waste in natural habitats are causing serious pollution problems. For this reason, a continuously growing interest is recorded around sustainable materials, potential candidate for the replacement of traditional recalcitrant plastics. Promising results have been obtained with biopolymers, in particular with the class of biopolyesters. Their potential biodegradability and biobased nature is particularly interesting mainly for food packaging, where the multilayer systems normally used and the contamination by organic matter create severe recycling limits. In this framework, the present research has been conducted with the aim of synthetizing, modifying and characterizing biopolymers for food packaging application. New bioplastics based on monomers derived from renewable resources were successfully synthetized by two-step melt polycondensation and chain extension reaction following the “Green chemistry” principles. Moreover, well-known biopolyesters have been modified by blending or copolymerization, both resulting effective techniques to ad hoc tune the polymer final characteristics. The materials obtained have been processed and characterized from the chemical, structural, thermal and mechanical point of view; more specific characterizations as compostability tests, surface hydrophilicity film evaluation and barrier property measurements were conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the synthesis of a new bifunctionalized cyclooctyne for a possible layer by layer surface functionalization is presented. The main objective is to find a more stable molecule than the literature known methyl enol ether substituted cyclooctyne. Accordingly, the two target functionalities are an internal alkyne group and a vinyl methyl sulfide group. The synthesis was achieved in 9 steps and consists first of all in the preparation of an aldehyde starting from 1,5-cyclooctadiene with a cyclopropanation reaction followed by a reduction and the SWERN oxidation to an aldehyde. The new functionality was introduced by exploiting the WITTIG reaction. For the alkyne group a bromination followed by a double elimination gave good results. The reactivity of the new molecule was tested using a sequential application of SPAAC and iEDDA reactions, comparing it with the cyclooctyne functionalized with a methyl enol ether. Concerning the comparison of both compounds the sulfur ether is significantly slower and therefore more stable. It will be tested in the future for surface functionalization from the KOERT group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interfacing materials with different intrinsic chemical-physical characteristics allows for the generation of a new system with multifunctional features. Here, this original concept is implemented for tailoring the functional properties of bi-dimensional black phosphorus (2D bP or phosphorene) and organic light-emitting transistors (OLETs). Phosphorene is highly reactive under atmospheric conditions and its small-area/lab-scale deposition techniques have hampered the introduction of this material in real-world applications so far. The protection of 2D bP against the oxygen by means of functionalization with alkane molecules and pyrene derivatives, showed long-term stability with respect to the bare 2D bP by avoiding remarkable oxidation up to 6 months, paving the way towards ultra-sensitive oxygen chemo-sensors. A new approach of deposition-precipitation heterogeneous reaction was developed to decorate 2D bP with Au nanoparticles (NP)s, obtaining a “stabilizer-free” that may broaden the possible applications of the 2D bP/Au NPs interface in catalysis and biodiagnostics. Finally, 2D bP was deposited by electrospray technique, obtaining oxidized-phosphorous flakes as wide as hundreds of µm2 and providing for the first time a phosphorous-based bidimensional system responsive to electromechanical stimuli. The second part of the thesis focuses on the study of organic heterostructures in ambipolar OLET devices, intriguing optoelectronic devices that couple the micro-scaled light-emission with electrical switching. Initially, an ambipolar single-layer OLET based on a multifunctional organic semiconductor, is presented. The bias-depending light-emission shifted within the transistor channel, as expected in well-balanced ambipolar OLETs. However, the emitted optical power of the single layer-based device was unsatisfactory. To improve optoelectronic performance of the device, a multilayer organic architecture based on hole-transporting semiconductor, emissive donor-acceptor blend and electron-transporting semiconductor was optimized. We showed that the introduction of a suitable electron-injecting layer at the interface between the electron-transporting and light-emission layers may enable a ≈ 2× improvement of efficiency at reduced applied bias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) is a widely recognized gasotransmitter, with key roles in physiological and pathological processes. The accurate quantification of H2S and reactive sulfur species (RSS) may hold important implications for the diagnosis and prognosis of various diseases. However, H2S species quantification in biological matrices is still a challenge. Among the sulfide detection methods, monobromobimane (MBB) derivatization coupled with reversed phase high-performance liquid chromatography (RP-HPLC) is one of the most reported. However, it is characterized by a complex preparation and time-consuming process, which may alter the actual H2S level. Moreover, quantitative validation has still not been described based on a survey of previously published works. In this study, we developed and validated an improved analytical protocol for the MBB RP-HPLC method. Main parameters like MBB concentration, temperature, reaction time, and sample handling were optimized, and the calibration method was further validated using leave-one-out cross-validation (CV) and tested in a clinical setting. The method shows high sensitivity and allows the quantification of H2S species, with a limit of detection (LOD) of 0.5 µM and a limit of quantification (LOQ) of 0.9 µM. Additionally, this model was successfully applied in measurements of H2S levels in the serum of patients subjected to inhalation with vapors rich in H2S. In addition, a properly procedure was established for H2S release with the modified MBB HPLC-FLD method. The proposed analytical approach demonstrated the slow-release kinetics of H2S from the multilayer Silk-Fibroin scaffolds with the combination of different H2S donor’s concentration with respect to the weight of PLGA nanofiber. In the end, some efforts were made on sulfide measurements by using size exclusion chromatography fluorescence/ultraviolet detection and inductively coupled plasma-mass spectrometry (SEC-FLD/UV-ICP/MS). It’s intended as a preliminary study in order to define the feasibility of a separation-detection-quantification platform to analyze biological samples and quantify sulfur species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigates mechanisms and boundary conditions that steer the early localisation of deformation and strain in carbonate multilayers involved in thrust systems, under shallow and mid-crustal conditions. Much is already understood about deformation localisation, but some key points remain loosely constrained. They encompass i) the understanding of which structural domains can preserve evidence of early stages of tectonic shortening, ii) the recognition of which mechanisms assist deformation during these stages and iii) the identification of parameters that actually steer the beginning of localisation. To clarify these points, the thesis presents the results of an integrated, multiscale and multi-technique structural study that relied on field and laboratory data to analyse the structural, architectural, mineralogical and geochemical features that govern deformation during compressional tectonics. By focusing on two case studies, the Eastern Southern Alps (northern Italy), where deformation is mainly brittle, and the Oman Mountains (northeastern Oman), where ductile deformation dominates, the thesis shows that the deformation localisation is steered by several mechanisms that mutually interact at different stages during compression. At shallow crustal conditions, derived conceptual and numerical models show that both inherited (e.g., stratigraphic) and acquired (e.g., structural) features play a key role in steering deformation and differentiating the seismic behaviour of the multilayer succession. At the same time, at deeper crustal conditions, strain localises in narrow domains in which fluids, temperature, shear strain and pressure act together during the development of the internal fabric and the chemical composition of mylonitic shear zones, in which localisation took place under high-pressure (HP) and low-temperature (LT) conditions. In particular, results indicate that those shear zones acted as “sheltering structural capsules” in which peculiar processes can happen and where the results of these processes can be successively preserved even over hundreds of millions of years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In questo elaborato vengono analizzate differenti tecniche per la detection di jammer attivi e costanti in una comunicazione satellitare in uplink. Osservando un numero limitato di campioni ricevuti si vuole identificare la presenza di un jammer. A tal fine sono stati implementati i seguenti classificatori binari: support vector machine (SVM), multilayer perceptron (MLP), spectrum guarding e autoencoder. Questi algoritmi di apprendimento automatico dipendono dalle features che ricevono in ingresso, per questo motivo è stata posta particolare attenzione alla loro scelta. A tal fine, sono state confrontate le accuratezze ottenute dai detector addestrati utilizzando differenti tipologie di informazione come: i segnali grezzi nel tempo, le statistical features, le trasformate wavelet e lo spettro ciclico. I pattern prodotti dall’estrazione di queste features dai segnali satellitari possono avere dimensioni elevate, quindi, prima della detection, vengono utilizzati i seguenti algoritmi per la riduzione della dimensionalità: principal component analysis (PCA) e linear discriminant analysis (LDA). Lo scopo di tale processo non è quello di eliminare le features meno rilevanti, ma combinarle in modo da preservare al massimo l’informazione, evitando problemi di overfitting e underfitting. Le simulazioni numeriche effettuate hanno evidenziato come lo spettro ciclico sia in grado di fornire le features migliori per la detection producendo però pattern di dimensioni elevate, per questo motivo è stato necessario l’utilizzo di algoritmi di riduzione della dimensionalità. In particolare, l'algoritmo PCA è stato in grado di estrarre delle informazioni migliori rispetto a LDA, le cui accuratezze risentivano troppo del tipo di jammer utilizzato nella fase di addestramento. Infine, l’algoritmo che ha fornito le prestazioni migliori è stato il Multilayer Perceptron che ha richiesto tempi di addestramento contenuti e dei valori di accuratezza elevati.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hand gesture recognition based on surface electromyography (sEMG) signals is a promising approach for the development of intuitive human-machine interfaces (HMIs) in domains such as robotics and prosthetics. The sEMG signal arises from the muscles' electrical activity, and can thus be used to recognize hand gestures. The decoding from sEMG signals to actual control signals is non-trivial; typically, control systems map sEMG patterns into a set of gestures using machine learning, failing to incorporate any physiological insight. This master thesis aims at developing a bio-inspired hand gesture recognition system based on neuromuscular spike extraction rather than on simple pattern recognition. The system relies on a decomposition algorithm based on independent component analysis (ICA) that decomposes the sEMG signal into its constituent motor unit spike trains, which are then forwarded to a machine learning classifier. Since ICA does not guarantee a consistent motor unit ordering across different sessions, 3 approaches are proposed: 2 ordering criteria based on firing rate and negative entropy, and a re-calibration approach that allows the decomposition model to retain information about previous sessions. Using a multilayer perceptron (MLP), the latter approach results in an accuracy up to 99.4% in a 1-subject, 1-degree of freedom scenario. Afterwards, the decomposition and classification pipeline for inference is parallelized and profiled on the PULP platform, achieving a latency < 50 ms and an energy consumption < 1 mJ. Both the classification models tested (a support vector machine and a lightweight MLP) yielded an accuracy > 92% in a 1-subject, 5-classes (4 gestures and rest) scenario. These results prove that the proposed system is suitable for real-time execution on embedded platforms and also capable of matching the accuracy of state-of-the-art approaches, while also giving some physiological insight on the neuromuscular spikes underlying the sEMG.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AlSi10Mg alloy is one of the most widely used alloys for producing structural components by Laser-based Powder Fusion (L-PBF) technology due to the high mechanical and technological properties. The present work aims to characterize mechanically and tribologically the L-PBF AlSi10Mg alloy subjected to both heat treatment and surface modification cycles. Specifically, the effects of three heat treatments on the tribological and mechanical properties of the alloy were analyzed: T5 (artificial aging at 160 °C for 4 h), T6 rapid solution heat treatment (solution heat treatment at 510 °C for 1h and aging at 160 °C for 6 h), and T6 benchmark (solution heat treatment at 540 °C for 1h and aging at 160 °C for 4 h), the latter used as a benchmark. The study highlighted how the better balance between strength and ductility properties induced by the introduction of heat treatments leads to lower wear resistance and not significant variations in the friction coefficient of the alloy. The tribological and mechanical behavior of the alloy coated with two different coating structures, consisting of (i) chemical Ni (Ni-P) and (ii) Ni-P + DLC, was also evaluated. The goal was the identification of a deposition cycle such as to guarantee the optimization of the mechanical and tribological behavior of the alloy. The Ni-P coating provided good wear resistance but an increase in the coefficient of friction. In contrast, using the DLC top coating resulted in excellent tribological performance in wear resistance and friction coefficient. The samples characterized by the Ni-P + DLC multilayer coating were subsequently subjected to mechanical characterization. The results obtained highlighted problems of adhesion and incipient breaking of the material due to the different mechanical behavior of the coating, considerably reducing the mechanical performance of the alloy coated with Ni-P+DLC multilayer solution compared to the specimens in the un-coated condition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In food and beverage industry, packaging plays a crucial role in protecting food and beverages and maintaining their organoleptic properties. Their disposal, unfortunately, is still difficult, mainly because there is a lack of economically viable systems for separating composite and multilayer materials. It is therefore necessary not only to increase research in this area, but also to set up pilot plants and implement these technologies on an industrial scale. LCA (Life Cycle Assessment) can fulfil these purposes. It allows an assessment of the potential environmental impacts associated with a product, service or process. The objective of this thesis work is to analyze the environmental performance of six separation methods, designed for separating the polymeric from the aluminum fraction in multilayered packaging. The first four methods utilize the chemical dissolution technique using Biodiesel, Cyclohexane, 2-Methyltetrahydrofuran (2-MeTHF) and Cyclopentyl-methyl-ether (CPME) as solvents. The last two applied the mechanical delamination technique with surfactant-activated water, using Ammonium laurate and Triethanolamine laurate as surfactants, respectively. For all six methods, the LCA methodology was applied and the corresponding models were built with the GaBi software version 10.6.2.9, specifically for LCA analyses. Unfortunately, due to a lack of data, it was not possible to obtain the results of the dissolution methods with the solvents 2-MeTHF and CPME; for the other methods, however, the individual environmental performances were calculated. Results revealed that the methods with the best environmental performance are method 2, for dissolution methods, and method 5, for delamination methods. This result is confirmed both by the analysis of normalized and weighted results and by the analysis of 'original' results. An hotspots analysis was also conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis work aims to produce and test multilayer electrodes for their use as photocathode in a PEC device. The electrode developed is based on CIGS, a I-III-VI2 semiconductor material composed of copper (Cu), indium (In), Gallium (Ga) and selenium (Se). It has a bandgap in the range of 1.0-2.4 eV and an absorption coefficient of about 105cm−1, which makes it a promising photocathode for PEC water splitting. The idea of our multilayer electrode is to deposit a thin layer of CdS on top of CIGS to form a solid-state p–n junction and lead to more efficient charge separation. In addition another thin layer of AZO (Aluminum doped zinc oxide) is deposit on top of CdS since it would form a better alignment between the AZO/CdS/CIGS interfaces, which would help to drive the charge transport further and minimize charge recombination. Finally, a TiO2 layer on top of the electrodes is used as protective layer during the H2 evolution. FTO (Fluorine doped tin oxide) and Molybdenum are used as back-contact. We used the technique of RF magnetron sputtering to deposit the thin layers of material. The structural characterization performed by XDR measurement confirm a polycrystalline chalcopyrite structural with a preferential orientation along the (112) direction for the CIGS. From linear fit of the Tauc plot, we get an energy gap of about 1.16 eV. In addition, from a four points measurements, we get a resistivity of 0.26 Ωcm. We performed an electrochemical characterization in cell of our electrodes. The results show that our samples have a good stability but produce a photocurrent of the order of μA, three orders of magnitude smaller than our targets. The EIS analysis confirm a significant depletion of the species in front of the electrode causing a lower conversion of the species and less current flows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neural scene representation and neural rendering are new computer vision techniques that enable the reconstruction and implicit representation of real 3D scenes from a set of 2D captured images, by fitting a deep neural network. The trained network can then be used to render novel views of the scene. A recent work in this field, Neural Radiance Fields (NeRF), presented a state-of-the-art approach, which uses a simple Multilayer Perceptron (MLP) to generate photo-realistic RGB images of a scene from arbitrary viewpoints. However, NeRF does not model any light interaction with the fitted scene; therefore, despite producing compelling results for the view synthesis task, it does not provide a solution for relighting. In this work, we propose a new architecture to enable relighting capabilities in NeRF-based representations and we introduce a new real-world dataset to train and evaluate such a model. Our method demonstrates the ability to perform realistic rendering of novel views under arbitrary lighting conditions.