867 resultados para Multi-scale modelling
Resumo:
The large scale urban consumption of energy (LUCY) model simulates all components of anthropogenic heat flux (QF) from the global to individual city scale at 2.5 × 2.5 arc-minute resolution. This includes a database of different working patterns and public holidays, vehicle use and energy consumption in each country. The databases can be edited to include specific diurnal and seasonal vehicle and energy consumption patterns, local holidays and flows of people within a city. If better information about individual cities is available within this (open-source) database, then the accuracy of this model can only improve, to provide the community data from global-scale climate modelling or the individual city scale in the future. The results show that QF varied widely through the year, through the day, between countries and urban areas. An assessment of the heat emissions estimated revealed that they are reasonably close to those produced by a global model and a number of small-scale city models, so results from LUCY can be used with a degree of confidence. From LUCY, the global mean urban QF has a diurnal range of 0.7–3.6 W m−2, and is greater on weekdays than weekends. The heat release from building is the largest contributor (89–96%), to heat emissions globally. Differences between months are greatest in the middle of the day (up to 1 W m−2 at 1 pm). December to February, the coldest months in the Northern Hemisphere, have the highest heat emissions. July and August are at the higher end. The least QF is emitted in May. The highest individual grid cell heat fluxes in urban areas were located in New York (577), Paris (261.5), Tokyo (178), San Francisco (173.6), Vancouver (119) and London (106.7). Copyright © 2010 Royal Meteorological Society
Resumo:
Diurnal warming events between 5 and 7 K, spatially coherent over large areas (∼1000 km), are observed in independent satellite measurements of ocean surface temperature. The majority of the large events occurred in the extra-tropics. Given sufficient heating (from solar radiation), the location and magnitude of these events appears to be primarily determined by large-scale wind patterns. The amplitude of the measured diurnal heating scales inversely with the spatial resolution of the different sensors used in this study. These results indicate that predictions of peak diurnal warming using wind speeds with a 25 km spatial resolution available from satellite sensors and those with 50–100 km resolution from Numerical Weather Prediction models may have underestimated warming. Thus, the use of these winds in modeling diurnal effects will be limited in accuracy by both the temporal and spatial resolution of the wind fields.
Resumo:
Global wetlands are believed to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. The Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) investigated our present ability to simulate large-scale wetland characteristics and corresponding CH4 emissions. To ensure inter-comparability, we used a common experimental protocol driving all models with the same climate and carbon dioxide (CO2) forcing datasets. The WETCHIMP experiments were conducted for model equilibrium states as well as transient simulations covering the last century. Sensitivity experiments investigated model response to changes in selected forcing inputs (precipitation, temperature, and atmospheric CO2 concentration). Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The models also varied in methods to calculate wetland size and location, with some models simulating wetland area prognostically, while other models relied on remotely sensed inundation datasets, or an approach intermediate between the two. Four major conclusions emerged from the project. First, the suite of models demonstrate extensive disagreement in their simulations of wetland areal extent and CH4 emissions, in both space and time. Simple metrics of wetland area, such as the latitudinal gradient, show large variability, principally between models that use inundation dataset information and those that independently determine wetland area. Agreement between the models improves for zonally summed CH4 emissions, but large variation between the models remains. For annual global CH4 emissions, the models vary by ±40% of the all-model mean (190 Tg CH4 yr−1). Second, all models show a strong positive response to increased atmospheric CO2 concentrations (857 ppm) in both CH4 emissions and wetland area. In response to increasing global temperatures (+3.4 °C globally spatially uniform), on average, the models decreased wetland area and CH4 fluxes, primarily in the tropics, but the magnitude and sign of the response varied greatly. Models were least sensitive to increased global precipitation (+3.9 % globally spatially uniform) with a consistent small positive response in CH4 fluxes and wetland area. Results from the 20th century transient simulation show that interactions between climate forcings could have strong non-linear effects. Third, we presently do not have sufficient wetland methane observation datasets adequate to evaluate model fluxes at a spatial scale comparable to model grid cells (commonly 0.5°). This limitation severely restricts our ability to model global wetland CH4 emissions with confidence. Our simulated wetland extents are also difficult to evaluate due to extensive disagreements between wetland mapping and remotely sensed inundation datasets. Fourth, the large range in predicted CH4 emission rates leads to the conclusion that there is both substantial parameter and structural uncertainty in large-scale CH4 emission models, even after uncertainties in wetland areas are accounted for.
Resumo:
An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.
Resumo:
Urbanization related alterations to the surface energy balance impact urban warming (‘heat islands’), the growth of the boundary layer, and many other biophysical processes. Traditionally, in situ heat flux measures have been used to quantify such processes, but these typically represent only a small local-scale area within the heterogeneous urban environment. For this reason, remote sensing approaches are very attractive for elucidating more spatially representative information. Here we use hyperspectral imagery from a new airborne sensor, the Operative Modular Imaging Spectrometer (OMIS), along with a survey map and meteorological data, to derive the land cover information and surface parameters required to map spatial variations in turbulent sensible heat flux (QH). The results from two spatially-explicit flux retrieval methods which use contrasting approaches and, to a large degree, different input data are compared for a central urban area of Shanghai, China: (1) the Local-scale Urban Meteorological Parameterization Scheme (LUMPS) and (2) an Aerodynamic Resistance Method (ARM). Sensible heat fluxes are determined at the full 6 m spatial resolution of the OMIS sensor, and at lower resolutions via pixel aggregation and spatial averaging. At the 6 m spatial resolution, the sensible heat flux of rooftop dominated pixels exceeds that of roads, water and vegetated areas, with values peaking at ∼ 350 W m− 2, whilst the storage heat flux is greatest for road dominated pixels (peaking at around 420 W m− 2). We investigate the use of both OMIS-derived land surface temperatures made using a Temperature–Emissivity Separation (TES) approach, and land surface temperatures estimated from air temperature measures. Sensible heat flux differences from the two approaches over the entire 2 × 2 km study area are less than 30 W m− 2, suggesting that methods employing either strategy maybe practica1 when operated using low spatial resolution (e.g. 1 km) data. Due to the differing methodologies, direct comparisons between results obtained with the LUMPS and ARM methods are most sensibly made at reduced spatial scales. At 30 m spatial resolution, both approaches produce similar results, with the smallest difference being less than 15 W m− 2 in mean QH averaged over the entire study area. This is encouraging given the differing architecture and data requirements of the LUMPS and ARM methods. Furthermore, in terms of mean study QH, the results obtained by averaging the original 6 m spatial resolution LUMPS-derived QH values to 30 and 90 m spatial resolution are within ∼ 5 W m− 2 of those derived from averaging the original surface parameter maps prior to input into LUMPS, suggesting that that use of much lower spatial resolution spaceborne imagery data, for example from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is likely to be a practical solution for heat flux determination in urban areas.
Resumo:
We present a methodology that allows a sea ice rheology, suitable for use in a General Circulation Model (GCM), to be determined from laboratory and tank experiments on sea ice when combined with a kinematic model of deformation. The laboratory experiments determine a material rheology for sea ice, and would investigate a nonlinear friction law of the form τ ∝ σ n⅔, instead of the more familiar Amonton's law, τ = μσn (τ is the shear stress, μ is the coefficient of friction and σ n is the normal stress). The modelling approach considers a representative region R containing ice floes (or floe aggregates), separated by flaws. The deformation of R is imposed and the motion of the floes determined using a kinematic model, which will be motivated from SAR observations. Deformation of the flaws is inferred from the floe motion and stress determined from the material rheology. The stress over R is then determined from the area-weighted contribution from flaws and floes
Resumo:
In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.
Resumo:
We investigate the role of the ocean feedback on the climate in response to insolation forcing during the mid-Holocene (6,000 year BP) using results from seven coupled ocean–atmosphere general circulation models. We examine how the dipole in late summer sea-surface temperature (SST) anomalies in the tropical Atlantic increases the length of the African monsoon, how this dipole structure is created and maintained, and how the late summer SST warming in the northwest Indian Ocean affects the monsoon retreat in this sector. Similar mechanisms are found in all of the models, including a strong wind evaporation feedback and changes in the mixed layer depth that enhance the insolation forcing, as well as increased Ekman transport in the Atlantic that sharpens the Atlantic dipole pattern. We also consider changes in interannual variability over West Africa and the Indian Ocean. The teleconnection between variations in SST and Sahelian precipitation favor a larger impact of the Atlantic dipole mode in this region. In the Indian Ocean, the strengthening of the Indian dipole structure in autumn has a damping effect on the Indian dipole mode at the interannual time scale
Resumo:
The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere towards dawn and out of the ionosphere towards dusk, linked by a westward electrojet. We use multi-spacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 Jan 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft travelled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal sub-structure on scales of 100~km at altitudes of 4,000-7,000~km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240~s after Cluster 4 at 1,300-2,000~km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the pre-onset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs) we conclude that significant questions remain for the explanation of SCW structuring by BBF driven ``wedgelets". Our results therefore represent constraints on future modelling and theoretical frameworks on the generation of the SCW.
Resumo:
Runoff generation processes and pathways vary widely between catchments. Credible simulations of solute and pollutant transport in surface waters are dependent on models which facilitate appropriate, catchment-specific representations of perceptual models of the runoff generation process. Here, we present a flexible, semi-distributed landscape-scale rainfall-runoff modelling toolkit suitable for simulating a broad range of user-specified perceptual models of runoff generation and stream flow occurring in different climatic regions and landscape types. PERSiST (the Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport) is designed for simulating present-day hydrology; projecting possible future effects of climate or land use change on runoff and catchment water storage; and generating hydrologic inputs for the Integrated Catchments (INCA) family of models. PERSiST has limited data requirements and is calibrated using observed time series of precipitation, air temperature and runoff at one or more points in a river network. Here, we apply PERSiST to the river Thames in the UK and describe a Monte Carlo tool for model calibration, sensitivity and uncertainty analysis
Resumo:
Global communication requirements and load imbalance of some parallel data mining algorithms are the major obstacles to exploit the computational power of large-scale systems. This work investigates how non-uniform data distributions can be exploited to remove the global communication requirement and to reduce the communication cost in iterative parallel data mining algorithms. In particular, the analysis focuses on one of the most influential and popular data mining methods, the k-means algorithm for cluster analysis. The straightforward parallel formulation of the k-means algorithm requires a global reduction operation at each iteration step, which hinders its scalability. This work studies a different parallel formulation of the algorithm where the requirement of global communication can be relaxed while still providing the exact solution of the centralised k-means algorithm. The proposed approach exploits a non-uniform data distribution which can be either found in real world distributed applications or can be induced by means of multi-dimensional binary search trees. The approach can also be extended to accommodate an approximation error which allows a further reduction of the communication costs.
Resumo:
almonella enterica serovar Typhimurium is an established model organism for Gram-negative, intracellular pathogens. Owing to the rapid spread of resistance to antibiotics among this group of pathogens, new approaches to identify suitable target proteins are required. Based on the genome sequence of Salmonella Typhimurium and associated databases, a genome-scale metabolic model was constructed. Output was based on an experimental determination of the biomass of Salmonella when growing in glucose minimal medium. Linear programming was used to simulate variations in energy demand, while growing in glucose minimal medium. By grouping reactions with similar flux responses, a sub-network of 34 reactions responding to this variation was identified (the catabolic core). This network was used to identify sets of one and two reactions, that when removed from the genome-scale model interfered with energy and biomass generation. 11 such sets were found to be essential for the production of biomass precursors. Experimental investigation of 7 of these showed that knock-outs of the associated genes resulted in attenuated growth for 4 pairs of reactions, while 3 single reactions were shown to be essential for growth.
Resumo:
Insect pollination benefits over three quarters of the world's major crops. There is growing concern that observed declines in pollinators may impact on production and revenues from animal pollinated crops. Knowing the distribution of pollinators is therefore crucial for estimating their availability to pollinate crops; however, in general, we have an incomplete knowledge of where these pollinators occur. We propose a method to predict geographical patterns of pollination service to crops, novel in two elements: the use of pollinator records rather than expert knowledge to predict pollinator occurrence, and the inclusion of the managed pollinator supply. We integrated a maximum entropy species distribution model (SDM) with an existing pollination service model (PSM) to derive the availability of pollinators for crop pollination. We used nation-wide records of wild and managed pollinators (honey bees) as well as agricultural data from Great Britain. We first calibrated the SDM on a representative sample of bee and hoverfly crop pollinator species, evaluating the effects of different settings on model performance and on its capacity to identify the most important predictors. The importance of the different predictors was better resolved by SDM derived from simpler functions, with consistent results for bees and hoverflies. We then used the species distributions from the calibrated model to predict pollination service of wild and managed pollinators, using field beans as a test case. The PSM allowed us to spatially characterize the contribution of wild and managed pollinators and also identify areas potentially vulnerable to low pollination service provision, which can help direct local scale interventions. This approach can be extended to investigate geographical mismatches between crop pollination demand and the availability of pollinators, resulting from environmental change or policy scenarios.
Resumo:
Flash floods pose a significant danger for life and property. Unfortunately, in arid and semiarid environment the runoff generation shows a complex non-linear behavior with a strong spatial and temporal non-uniformity. As a result, the predictions made by physically-based simulations in semiarid areas are subject to great uncertainty, and a failure in the predictive behavior of existing models is common. Thus better descriptions of physical processes at the watershed scale need to be incorporated into the hydrological model structures. For example, terrain relief has been systematically considered static in flood modelling at the watershed scale. Here, we show that the integrated effect of small distributed relief variations originated through concurrent hydrological processes within a storm event was significant on the watershed scale hydrograph. We model these observations by introducing dynamic formulations of two relief-related parameters at diverse scales: maximum depression storage, and roughness coefficient in channels. In the final (a posteriori) model structure these parameters are allowed to be both time-constant or time-varying. The case under study is a convective storm in a semiarid Mediterranean watershed with ephemeral channels and high agricultural pressures (the Rambla del Albujón watershed; 556 km 2 ), which showed a complex multi-peak response. First, to obtain quasi-sensible simulations in the (a priori) model with time-constant relief-related parameters, a spatially distributed parameterization was strictly required. Second, a generalized likelihood uncertainty estimation (GLUE) inference applied to the improved model structure, and conditioned to observed nested hydrographs, showed that accounting for dynamic relief-related parameters led to improved simulations. The discussion is finally broadened by considering the use of the calibrated model both to analyze the sensitivity of the watershed to storm motion and to attempt the flood forecasting of a stratiform event with highly different behavior.
Resumo:
This study represents the first detailed multi-proxy palaeoenvironmental investigation associated with a Late Iron Age lake-dwelling site in the eastern Baltic. The main objective was to reconstruct the environmental and vegetation dynamics associated with the establishment of the lake-dwelling and land-use during the last 2,000 years. A lacustrine sediment core located adjacent to a Late Iron Age lake-dwelling, medieval castle and Post-medieval manor was sampled in Lake Āraiši. The core was dated using spheroidal fly-ash particles and radiocarbon dating, and analysed in terms of pollen, non-pollen palynomorphs, diatoms, loss-on-ignition, magnetic susceptibility and element geochemistry. Associations between pollen and other proxies were statistically tested. During ad 1–700, the vicinity of Lake Āraiši was covered by forests and human activities were only small-scale with the first appearance of cereal pollen (Triticum and Secale cereale) after ad 400. The most significant changes in vegetation and environment occurred with the establishment of the lake-dwelling around ad 780 when the immediate surroundings of the lake were cleared for agriculture, and within the lake there were increased nutrient levels. The highest accumulation rates of coprophilous fungi coincide with the occupation of the lake-dwelling from ad 780–1050, indicating that parts of the dwelling functioned as byres for livestock. The conquest of tribal lands during the crusades resulted in changes to the ownership, administration and organisation of the land, but our results indicate that the form and type of agriculture and land-use continued much as it had during the preceding Late Iron Age.