877 resultados para Multi-camera system
Resumo:
Computer-Based Learning systems of one sort or another have been in existence for almost 20 years, but they have yet to achieve real credibility within Commerce, Industry or Education. A variety of reasons could be postulated for this, typically: - cost - complexity - inefficiency - inflexibility - tedium Obviously different systems deserve different levels and types of criticism, but it still remains true that Computer-Based Learning (CBL) is falling significantly short of its potential. Experience of a small, but highly successful CBL system within a large, geographically distributed industry (the National Coal Board) prompted an investigation into currently available packages, the original intention being to purchase the most suitable software and run it on existing computer hardware, alongside existing software systems. It became apparent that none of the available CBL packages were suitable, and a decision was taken to develop an in-house Computer-Assisted Instruction system according to the following criteria: - cheap to run; - easy to author course material; - easy to use; - requires no computing knowledge to use (as either an author or student) ; - efficient in the use of computer resources; - has a comprehensive range of facilities at all levels. This thesis describes the initial investigation, resultant observations and the design, development and implementation of the SCHOOL system. One of the principal characteristics c£ SCHOOL is that it uses a hierarchical database structure for the storage of course material - thereby providing inherently a great deal of the power, flexibility and efficiency originally required. Trials using the SCHOOL system on IBM 303X series equipment are also detailed, along with proposed and current development work on what is essentially an operational CBL system within a large-scale Industrial environment.
Resumo:
linearity management is explored as a complete tool to obtain maximum transmission reach in a WDM fiber transmission system, making it possible to optimize multiple system parameters, including optimal dispersion pre-compensation, with fast simulations based on the continuous-wave approximation.
Resumo:
This paper addresses the problem of obtaining 3d detailed reconstructions of human faces in real-time and with inexpensive hardware. We present an algorithm based on a monocular multi-spectral photometric-stereo setup. This system is known to capture high-detailed deforming 3d surfaces at high frame rates and without having to use any expensive hardware or synchronized light stage. However, the main challenge of such a setup is the calibration stage, which depends on the lights setup and how they interact with the specific material being captured, in this case, human faces. For this purpose we develop a self-calibration technique where the person being captured is asked to perform a rigid motion in front of the camera, maintaining a neutral expression. Rigidity constrains are then used to compute the head's motion with a structure-from-motion algorithm. Once the motion is obtained, a multi-view stereo algorithm reconstructs a coarse 3d model of the face. This coarse model is then used to estimate the lighting parameters with a stratified approach: In the first step we use a RANSAC search to identify purely diffuse points on the face and to simultaneously estimate this diffuse reflectance model. In the second step we apply non-linear optimization to fit a non-Lambertian reflectance model to the outliers of the previous step. The calibration procedure is validated with synthetic and real data.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
In this paper is proposed a model for researching the capability to influence, by selected methods’ groups of compression, to the co-efficient of information security of selected objects’ groups, exposed to selected attacks’ groups. With the help of methods for multi-criteria evaluation are chosen the methods’ groups with the lowest risk with respect to the information security. Recommendations for future investigations are proposed.
Resumo:
Integrated supplier selection and order allocation is an important decision for both designing and operating supply chains. This decision is often influenced by the concerned stakeholders, suppliers, plant operators and customers in different tiers. As firms continue to seek competitive advantage through supply chain design and operations they aim to create optimized supply chains. This calls for on one hand consideration of multiple conflicting criteria and on the other hand consideration of uncertainties of demand and supply. Although there are studies on supplier selection using advanced mathematical models to cover a stochastic approach, multiple criteria decision making techniques and multiple stakeholder requirements separately, according to authors' knowledge there is no work that integrates these three aspects in a common framework. This paper proposes an integrated method for dealing with such problems using a combined Analytic Hierarchy Process-Quality Function Deployment (AHP-QFD) and chance constrained optimization algorithm approach that selects appropriate suppliers and allocates orders optimally between them. The effectiveness of the proposed decision support system has been demonstrated through application and validation in the bioenergy industry.
Resumo:
The polyparametric intelligence information system for diagnostics human functional state in medicine and public health is developed. The essence of the system consists in polyparametric describing of human functional state with the unified set of physiological parameters and using the polyparametric cognitive model developed as the tool for a system analysis of multitude data and diagnostics of a human functional state. The model is developed on the basis of general principles geometry and symmetry by algorithms of artificial intelligence systems. The architecture of the system is represented. The model allows analyzing traditional signs - absolute values of electrophysiological parameters and new signs generated by the model – relationships of ones. The classification of physiological multidimensional data is made with a transformer of the model. The results are presented to a physician in a form of visual graph – a pattern individual functional state. This graph allows performing clinical syndrome analysis. A level of human functional state is defined in the case of the developed standard (“ideal”) functional state. The complete formalization of results makes it possible to accumulate physiological data and to analyze them by mathematics methods.
Resumo:
The modern grid system or the smart grid is likely to be populated with multiple distributed energy sources, e.g. wind power, PV power, Plug-in Electric Vehicle (PEV). It will also include a variety of linear and nonlinear loads. The intermittent nature of renewable energies like PV, wind turbine and increased penetration of Electric Vehicle (EV) makes the stable operation of utility grid system challenging. In order to ensure a stable operation of the utility grid system and to support smart grid functionalities such as, fault ride-through, frequency response, reactive power support, and mitigation of power quality issues, an energy storage system (ESS) could play an important role. A fast acting bidirectional energy storage system which can rapidly provide and absorb power and/or VARs for a sufficient time is a potentially valuable tool to support this functionality. Battery energy storage systems (BESS) are one of a range suitable energy storage system because it can provide and absorb power for sufficient time as well as able to respond reasonably fast. Conventional BESS already exist on the grid system are made up primarily of new batteries. The cost of these batteries can be high which makes most BESS an expensive solution. In order to assist moving towards a low carbon economy and to reduce battery cost this work aims to research the opportunities for the re-use of batteries after their primary use in low and ultra-low carbon vehicles (EV/HEV) on the electricity grid system. This research aims to develop a new generation of second life battery energy storage systems (SLBESS) which could interface to the low/medium voltage network to provide necessary grid support in a reliable and in cost-effective manner. The reliability/performance of these batteries is not clear, but is almost certainly worse than a new battery. Manufacturers indicate that a mixture of gradual degradation and sudden failure are both possible and failure mechanisms are likely to be related to how hard the batteries were driven inside the vehicle. There are several figures from a number of sources including the DECC (Department of Energy and Climate Control) and Arup and Cenex reports indicate anything from 70,000 to 2.6 million electric and hybrid vehicles on the road by 2020. Once the vehicle battery has degraded to around 70-80% of its capacity it is considered to be at the end of its first life application. This leaves capacity available for a second life at a much cheaper cost than a new BESS Assuming a battery capability of around 5-18kWhr (MHEV 5kWh - BEV 18kWh battery) and approximate 10 year life span, this equates to a projection of battery storage capability available for second life of >1GWhrs by 2025. Moreover, each vehicle manufacturer has different specifications for battery chemistry, number and arrangement of battery cells, capacity, voltage, size etc. To enable research and investment in this area and to maximize the remaining life of these batteries, one of the design challenges is to combine these hybrid batteries into a grid-tie converter where their different performance characteristics, and parameter variation can be catered for and a hot swapping mechanism is available so that as a battery ends it second life, it can be replaced without affecting the overall system operation. This integration of either single types of batteries with vastly different performance capability or a hybrid battery system to a grid-tie 3 energy storage system is different to currently existing work on battery energy storage systems (BESS) which deals with a single type of battery with common characteristics. This thesis addresses and solves the power electronic design challenges in integrating second life hybrid batteries into a grid-tie energy storage unit for the first time. This study details a suitable multi-modular power electronic converter and its various switching strategies which can integrate widely different batteries to a grid-tie inverter irrespective of their characteristics, voltage levels and reliability. The proposed converter provides a high efficiency, enhanced control flexibility and has the capability to operate in different operational modes from the input to output. Designing an appropriate control system for this kind of hybrid battery storage system is also important because of the variation of battery types, differences in characteristics and different levels of degradations. This thesis proposes a generalised distributed power sharing strategy based on weighting function aims to optimally use a set of hybrid batteries according to their relative characteristics while providing the necessary grid support by distributing the power between the batteries. The strategy is adaptive in nature and varies as the individual battery characteristics change in real time as a result of degradation for example. A suitable bidirectional distributed control strategy or a module independent control technique has been developed corresponding to each mode of operation of the proposed modular converter. Stability is an important consideration in control of all power converters and as such this thesis investigates the control stability of the multi-modular converter in detailed. Many controllers use PI/PID based techniques with fixed control parameters. However, this is not found to be suitable from a stability point-of-view. Issues of control stability using this controller type under one of the operating modes has led to the development of an alternative adaptive and nonlinear Lyapunov based control for the modular power converter. Finally, a detailed simulation and experimental validation of the proposed power converter operation, power sharing strategy, proposed control structures and control stability issue have been undertaken using a grid connected laboratory based multi-modular hybrid battery energy storage system prototype. The experimental validation has demonstrated the feasibility of this new energy storage system operation for use in future grid applications.
Resumo:
In the article it is considered preconditions and main principles of creation of virtual laboratories for computer-aided design, as tools for interdisciplinary researches. Virtual laboratory, what are offered, is worth to be used on the stage of the requirements specification or EFT-stage, because it gives the possibility of fast estimating of the project realization, certain characteristics and, as a result, expected benefit of its applications. Using of these technologies already increase automation level of design stages of new devices for different purposes. Proposed computer technology gives possibility to specialists from such scientific fields, as chemistry, biology, biochemistry, physics etc, to check possibility of device creating on the basis of developed sensors. It lets to reduce terms and costs of designing of computer devices and systems on the early stages of designing, for example on the stage of requirements specification or EFT-stage. An important feature of this project is using the advanced multi-dimensional access method for organizing the information base of the Virtual laboratory.
Resumo:
Nonlinearity management is explored as a complete tool to obtain maximum transmission reach in a WDM fiber transmission system, making it possible to optimize multiple system parameters, including optimal dispersion pre-compensation, with fast simulations based on the continuous-wave approximation. © 2006 Optical Society of America.
Resumo:
Яни Чаушев, Милослав Средков, Красимир Манев - Всяко състезание по програмиране използва множество софтуерни инструменти за управление на процесите по време на състезанието. Въпреки че тези инструменти обикновено покриват спецификите на конкретния вид състезание задоволително, те рядко адресират трудностите на дългосрочното съхранение на данни и оперативната съвместимост. В тази статия е представен един софтуерен инструмент адресиращ тези проблеми. Вместо комплексна система, касаеща всички аспекти на състезанието, CORE е централизирано хранилище за съхраняване и поддържане на необходимите за различни състезания данни. Представени са основните му елементи, текущото състояние на реализацията и перспективите за развитие на системата.