894 resultados para Model-Based Design
Resumo:
A recent initiative of the European Space Agency (ESA) aims at the definition and adoption of a software reference architecture for use in on-board software of future space missions. Our PhD project placed in the context of that effort. At the outset of our work we gathered all the industrial needs relevant to ESA and all the main European space stakeholders and we were able to consolidate a set of technical high-level requirements for the fulfillment of them. The conclusion we reached from that phase confirmed that the adoption of a software reference architecture was indeed the best solution for the fulfillment of the high-level requirements. The software reference architecture we set on building rests on four constituents: (i) a component model, to design the software as a composition of individually verifiable and reusable software units; (ii) a computational model, to ensure that the architectural description of the software is statically analyzable; (iii) a programming model, to ensure that the implementation of the design entities conforms with the semantics, the assumptions and the constraints of the computational model; (iv) a conforming execution platform, to actively preserve at run time the properties asserted by static analysis. The nature, feasibility and fitness of constituents (ii), (iii) and (iv), were already proved by the author in an international project that preceded the commencement of the PhD work. The core of the PhD project was therefore centered on the design and prototype implementation of constituent (i), a component model. Our proposed component model is centered on: (i) rigorous separation of concerns, achieved with the support for design views and by careful allocation of concerns to the dedicated software entities; (ii) the support for specification and model-based analysis of extra-functional properties; (iii) the inclusion space-specific concerns.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
The diagnosis, grading and classification of tumours has benefited considerably from the development of DCE-MRI which is now essential to the adequate clinical management of many tumour types due to its capability in detecting active angiogenesis. Several strategies have been proposed for DCE-MRI evaluation. Visual inspection of contrast agent concentration curves vs time is a very simple yet operator dependent procedure, therefore more objective approaches have been developed in order to facilitate comparison between studies. In so called model free approaches, descriptive or heuristic information extracted from time series raw data have been used for tissue classification. The main issue concerning these schemes is that they have not a direct interpretation in terms of physiological properties of the tissues. On the other hand, model based investigations typically involve compartmental tracer kinetic modelling and pixel-by-pixel estimation of kinetic parameters via non-linear regression applied on region of interests opportunely selected by the physician. This approach has the advantage to provide parameters directly related to the pathophysiological properties of the tissue such as vessel permeability, local regional blood flow, extraction fraction, concentration gradient between plasma and extravascular-extracellular space. Anyway, nonlinear modelling is computational demanding and the accuracy of the estimates can be affected by the signal-to-noise ratio and by the initial solutions. The principal aim of this thesis is investigate the use of semi-quantitative and quantitative parameters for segmentation and classification of breast lesion. The objectives can be subdivided as follow: describe the principal techniques to evaluate time intensity curve in DCE-MRI with focus on kinetic model proposed in literature; to evaluate the influence in parametrization choice for a classic bi-compartmental kinetic models; to evaluate the performance of a method for simultaneous tracer kinetic modelling and pixel classification; to evaluate performance of machine learning techniques training for segmentation and classification of breast lesion.
Resumo:
In this thesis, the industrial application of control a Permanent Magnet Synchronous Motor in a sensorless configuration has been faced, and in particular the task of estimating the unknown “parameters” necessary for the application of standard motor control algorithms. In literature several techniques have been proposed to cope with this task, among them the technique based on model-based nonlinear observer has been followed. The hypothesis of neglecting the mechanical dynamics from the motor model has been applied due to practical and physical considerations, therefore only the electromagnetic dynamics has been used for the observers design. First observer proposed is based on stator currents and Stator Flux dynamics described in a generic rotating reference frame. Stator flux dynamics are known apart their initial conditions which are estimated, with speed that is also unknown, through the use of the Adaptive Theory. The second observer proposed is based on stator currents and Rotor Flux dynamics described in a self-aligning reference frame. Rotor flux dynamics are described in the stationary reference frame exploiting polar coordinates instead of classical Cartesian coordinates, by means the estimation of amplitude and speed of the rotor flux. The stability proof is derived in a Singular Perturbation Framework, which allows for the use the current estimation errors as a measure of rotor flux estimation errors. The stability properties has been derived using a specific theory for systems with time scale separation, which guarantees a semi-global practical stability. For the two observer ideal simulations and real simulations have been performed to prove the effectiveness of the observers proposed, real simulations on which the effects of the Inverter nonlinearities have been introduced, showing the already known problems of the model-based observers for low speed applications.
Resumo:
Nella presente tesi è proposta una metodologia per lo studio e la valutazione del comportamento sismico di edifici a telaio. Il metodo prevede la realizzazione di analisi non-lineari su modelli equivalenti MDOF tipo stick, in accordo alla classificazione data nel report FEMA 440. Gli step per l’applicazione del metodo sono descritti nella tesi. Per la validazione della metodologia si sono utilizzati confronti con analisi time-history condotte su modelli tridimensionali dettagliati delle strutture studiate (detailed model). I parametri ingegneristici considerati nel confronto, nell’ottica di utilizzare il metodo proposto in un approccio del tipo Displacement-Based Design sono lo spostamento globale in sommità, gli spostamenti di interpiano, le forze di piano e la forza totale alla base. I risultati delle analisi condotte sui modelli stick equivalenti, mostrano una buona corrispondenza, ottima in certi casi, con quelli delle analisi condotte sui modelli tridimensionali dettagliati. Le time-history realizzate sugli stick model permettono però, un consistente risparmio in termini di onere computazionale e di tempo per il post-processing dei risultati ottenuti.
Resumo:
The quench characteristics of second generation (2 G) YBCO Coated Conductor (CC) tapes are of fundamental importance for the design and safe operation of superconducting cables and magnets based on this material. Their ability to transport high current densities at high temperature, up to 77 K, and at very high fields, over 20 T, together with the increasing knowledge in their manufacturing, which is reducing their cost, are pushing the use of this innovative material in numerous system applications, from high field magnets for research to motors and generators as well as for cables. The aim of this Ph. D. thesis is the experimental analysis and numerical simulations of quench in superconducting HTS tapes and coils. A measurements facility for the characterization of superconducting tapes and coils was designed, assembled and tested. The facility consist of a cryostat, a cryocooler, a vacuum system, resistive and superconducting current leads and signal feedthrough. Moreover, the data acquisition system and the software for critical current and quench measurements were developed. A 2D model was developed using the finite element code COMSOL Multiphysics R . The problem of modeling the high aspect ratio of the tape is tackled by multiplying the tape thickness by a constant factor, compensating the heat and electrical balance equations by introducing a material anisotropy. The model was then validated both with the results of a 1D quench model based on a non-linear electric circuit coupled to a thermal model of the tape, to literature measurements and to critical current and quench measurements made in the cryogenic facility. Finally the model was extended to the study of coils and windings with the definition of the tape and stack homogenized properties. The procedure allows the definition of a multi-scale hierarchical model, able to simulate the windings with different degrees of detail.
Fault detection, diagnosis and active fault tolerant control for a satellite attitude control system
Resumo:
Modern control systems are becoming more and more complex and control algorithms more and more sophisticated. Consequently, Fault Detection and Diagnosis (FDD) and Fault Tolerant Control (FTC) have gained central importance over the past decades, due to the increasing requirements of availability, cost efficiency, reliability and operating safety. This thesis deals with the FDD and FTC problems in a spacecraft Attitude Determination and Control System (ADCS). Firstly, the detailed nonlinear models of the spacecraft attitude dynamics and kinematics are described, along with the dynamic models of the actuators and main external disturbance sources. The considered ADCS is composed of an array of four redundant reaction wheels. A set of sensors provides satellite angular velocity, attitude and flywheel spin rate information. Then, general overviews of the Fault Detection and Isolation (FDI), Fault Estimation (FE) and Fault Tolerant Control (FTC) problems are presented, and the design and implementation of a novel diagnosis system is described. The system consists of a FDI module composed of properly organized model-based residual filters, exploiting the available input and output information for the detection and localization of an occurred fault. A proper fault mapping procedure and the nonlinear geometric approach are exploited to design residual filters explicitly decoupled from the external aerodynamic disturbance and sensitive to specific sets of faults. The subsequent use of suitable adaptive FE algorithms, based on the exploitation of radial basis function neural networks, allows to obtain accurate fault estimations. Finally, this estimation is actively exploited in a FTC scheme to achieve a suitable fault accommodation and guarantee the desired control performances. A standard sliding mode controller is implemented for attitude stabilization and control. Several simulation results are given to highlight the performances of the overall designed system in case of different types of faults affecting the ADCS actuators and sensors.
Resumo:
Il progetto di ricerca è finalizzato allo sviluppo di una metodologia innovativa di supporto decisionale nel processo di selezione tra alternative progettuali, basata su indicatori di prestazione. In particolare il lavoro si è focalizzato sulla definizione d’indicatori atti a supportare la decisione negli interventi di sbottigliamento di un impianto di processo. Sono stati sviluppati due indicatori, “bottleneck indicators”, che permettono di valutare la reale necessità dello sbottigliamento, individuando le cause che impediscono la produzione e lo sfruttamento delle apparecchiature. Questi sono stati validati attraverso l’applicazione all’analisi di un intervento su un impianto esistente e verificando che lo sfruttamento delle apparecchiature fosse correttamente individuato. Definita la necessità dell’intervento di sbottigliamento, è stato affrontato il problema della selezione tra alternative di processo possibili per realizzarlo. È stato applicato alla scelta un metodo basato su indicatori di sostenibilità che consente di confrontare le alternative considerando non solo il ritorno economico degli investimenti ma anche gli impatti su ambiente e sicurezza, e che è stato ulteriormente sviluppato in questa tesi. Sono stati definiti due indicatori, “area hazard indicators”, relativi alle emissioni fuggitive, per integrare questi aspetti nell’analisi della sostenibilità delle alternative. Per migliorare l’accuratezza nella quantificazione degli impatti è stato sviluppato un nuovo modello previsionale atto alla stima delle emissioni fuggitive di un impianto, basato unicamente sui dati disponibili in fase progettuale, che tiene conto delle tipologie di sorgenti emettitrici, dei loro meccanismi di perdita e della manutenzione. Validato mediante il confronto con dati sperimentali di un impianto produttivo, si è dimostrato che tale metodo è indispensabile per un corretto confronto delle alternative poiché i modelli esistenti sovrastimano eccessivamente le emissioni reali. Infine applicando gli indicatori ad un impianto esistente si è dimostrato che sono fondamentali per semplificare il processo decisionale, fornendo chiare e precise indicazioni impiegando un numero limitato di informazioni per ricavarle.
Resumo:
This paper presents an automated solution for precise detection of fiducial screws from three-dimensional (3D) Computerized Tomography (CT)/Digital Volume Tomography (DVT) data for image-guided ENT surgery. Unlike previously published solutions, we regard the detection of the fiducial screws from the CT/DVT volume data as a pose estimation problem. We thus developed a model-based solution. Starting from a user-supplied initialization, our solution detects the fiducial screws by iteratively matching a computer aided design (CAD) model of the fiducial screw to features extracted from the CT/DVT data. We validated our solution on one conventional CT dataset and on five DVT volume datasets, resulting in a total detection of 24 fiducial screws. Our experimental results indicate that the proposed solution achieves much higher reproducibility and precision than the manual detection. Further comparison shows that the proposed solution produces better results on the DVT dataset than on the conventional CT dataset.
Resumo:
Decision trees have been proposed as a basis for modifying table based injection to reduce transient particulate spikes during the turbocharger lag period. It has been shown that decision trees can detect particulate spikes in real time. In well calibrated electronically controlled diesel engines these spikes are narrow and are encompassed by a wider NOx spike. Decision trees have been shown to pinpoint the exact location of measured opacity spikes in real time thus enabling targeted PM reduction with near zero NOx penalty. A calibrated dimensional model has been used to demonstrate the possible reduction of particulate matter with targeted injection pressure pulses. Post injection strategy optimized for near stoichiometric combustion has been shown to provide additional benefits. Empirical models have been used to calculate emission tradeoffs over the entire FTP cycle. An empirical model based transient calibration has been used to demonstrate that such targeted transient modifiers are more beneficial at lower engine-out NOx levels.
Resumo:
Indoor radon is regularly measured in Switzerland. However, a nationwide model to predict residential radon levels has not been developed. The aim of this study was to develop a prediction model to assess indoor radon concentrations in Switzerland. The model was based on 44,631 measurements from the nationwide Swiss radon database collected between 1994 and 2004. Of these, 80% randomly selected measurements were used for model development and the remaining 20% for an independent model validation. A multivariable log-linear regression model was fitted and relevant predictors selected according to evidence from the literature, the adjusted R², the Akaike's information criterion (AIC), and the Bayesian information criterion (BIC). The prediction model was evaluated by calculating Spearman rank correlation between measured and predicted values. Additionally, the predicted values were categorised into three categories (50th, 50th-90th and 90th percentile) and compared with measured categories using a weighted Kappa statistic. The most relevant predictors for indoor radon levels were tectonic units and year of construction of the building, followed by soil texture, degree of urbanisation, floor of the building where the measurement was taken and housing type (P-values <0.001 for all). Mean predicted radon values (geometric mean) were 66 Bq/m³ (interquartile range 40-111 Bq/m³) in the lowest exposure category, 126 Bq/m³ (69-215 Bq/m³) in the medium category, and 219 Bq/m³ (108-427 Bq/m³) in the highest category. Spearman correlation between predictions and measurements was 0.45 (95%-CI: 0.44; 0.46) for the development dataset and 0.44 (95%-CI: 0.42; 0.46) for the validation dataset. Kappa coefficients were 0.31 for the development and 0.30 for the validation dataset, respectively. The model explained 20% overall variability (adjusted R²). In conclusion, this residential radon prediction model, based on a large number of measurements, was demonstrated to be robust through validation with an independent dataset. The model is appropriate for predicting radon level exposure of the Swiss population in epidemiological research. Nevertheless, some exposure misclassification and regression to the mean is unavoidable and should be taken into account in future applications of the model.
Resumo:
Model-based calibration of steady-state engine operation is commonly performed with highly parameterized empirical models that are accurate but not very robust, particularly when predicting highly nonlinear responses such as diesel smoke emissions. To address this problem, and to boost the accuracy of more robust non-parametric methods to the same level, GT-Power was used to transform the empirical model input space into multiple input spaces that simplified the input-output relationship and improved the accuracy and robustness of smoke predictions made by three commonly used empirical modeling methods: Multivariate Regression, Neural Networks and the k-Nearest Neighbor method. The availability of multiple input spaces allowed the development of two committee techniques: a 'Simple Committee' technique that used averaged predictions from a set of 10 pre-selected input spaces chosen by the training data and the "Minimum Variance Committee" technique where the input spaces for each prediction were chosen on the basis of disagreement between the three modeling methods. This latter technique equalized the performance of the three modeling methods. The successively increasing improvements resulting from the use of a single best transformed input space (Best Combination Technique), Simple Committee Technique and Minimum Variance Committee Technique were verified with hypothesis testing. The transformed input spaces were also shown to improve outlier detection and to improve k-Nearest Neighbor performance when predicting dynamic emissions with steady-state training data. An unexpected finding was that the benefits of input space transformation were unaffected by changes in the hardware or the calibration of the underlying GT-Power model.
Resumo:
OBJECTIVE: The purpose of this study was to compare the efficacy of native engineered amniotic scaffolds (AS) and polyesterurethane scaffolds (DegraPol) and document wound healing response when sealing iatrogenic fetal membrane defects in the rabbit model. STUDY DESIGN: Native AS were engineered from freshly harvested membranes of 23 days' gestational age (GA; term = 31-2 d). Acellularity of AS was assessed by histology, light and scanning electron microscopy. Fetal membrane defects were created by 14 gauge-needle puncture at GA 23 days and primarily closed with AS (n = 10) or DegraPol (n = 10) or left unclosed (positive controls; n = 10). Sixty-one sacs served as negative controls. At GA 30 days a second look hysterotomy was performed to assess presence of amniotic fluid (AF) and harvest plugging sites for microscopic evaluation. RESULTS: Engineered AS had a cell-free collagenous fiber network. AF was significantly higher only in the DegraPol group (78%; P < .05) compared to the AF in positive controls (17%). Integration of plugs in the fetal membrane defect was better with AS than DegraPol, with higher reepithelialization rates (AS: 52.5% +/- 6.5%; DegraPol: 11.6% +/- 2.6%; P < .001) and proliferation indices (AS: 0.47 +/- 0.03; DegraPol: 0.28 +/- 0.04; P = .001). In both treatment groups, cell proliferation in the myometrium was increased (P < .05). CONCLUSION: Native AS seal iatrogenic fetal membrane defects better than DegraPol. Within a week, there is abundant reepithelilization and minimal local inflammation. This yields the proof of principle that engineered native, amniotic membrane scaffolds enhance fetal membrane wound healing response.
Resumo:
Submicroscopic changes in chromosomal DNA copy number dosage are common and have been implicated in many heritable diseases and cancers. Recent high-throughput technologies have a resolution that permits the detection of segmental changes in DNA copy number that span thousands of basepairs across the genome. Genome-wide association studies (GWAS) may simultaneously screen for copy number-phenotype and SNP-phenotype associations as part of the analytic strategy. However, genome-wide array analyses are particularly susceptible to batch effects as the logistics of preparing DNA and processing thousands of arrays often involves multiple laboratories and technicians, or changes over calendar time to the reagents and laboratory equipment. Failure to adjust for batch effects can lead to incorrect inference and requires inefficient post-hoc quality control procedures that exclude regions that are associated with batch. Our work extends previous model-based approaches for copy number estimation by explicitly modeling batch effects and using shrinkage to improve locus-specific estimates of copy number uncertainty. Key features of this approach include the use of diallelic genotype calls from experimental data to estimate batch- and locus-specific parameters of background and signal without the requirement of training data. We illustrate these ideas using a study of bipolar disease and a study of chromosome 21 trisomy. The former has batch effects that dominate much of the observed variation in quantile-normalized intensities, while the latter illustrates the robustness of our approach to datasets where as many as 25% of the samples have altered copy number. Locus-specific estimates of copy number can be plotted on the copy-number scale to investigate mosaicism and guide the choice of appropriate downstream approaches for smoothing the copy number as a function of physical position. The software is open source and implemented in the R package CRLMM available at Bioconductor (http:www.bioconductor.org).
Resumo:
The purpose of this study is to develop statistical methodology to facilitate indirect estimation of the concentration of antiretroviral drugs and viral loads in the prostate gland and the seminal vesicle. The differences in antiretroviral drug concentrations in these organs may lead to suboptimal concentrations in one gland compared to the other. Suboptimal levels of the antiretroviral drugs will not be able to fully suppress the virus in that gland, lead to a source of sexually transmissible virus and increase the chance of selecting for drug resistant virus. This information may be useful selecting antiretroviral drug regimen that will achieve optimal concentrations in most of male genital tract glands. Using fractionally collected semen ejaculates, Lundquist (1949) measured levels of surrogate markers in each fraction that are uniquely produced by specific male accessory glands. To determine the original glandular concentrations of the surrogate markers, Lundquist solved a simultaneous series of linear equations. This method has several limitations. In particular, it does not yield a unique solution, it does not address measurement error, and it disregards inter-subject variability in the parameters. To cope with these limitations, we developed a mechanistic latent variable model based on the physiology of the male genital tract and surrogate markers. We employ a Bayesian approach and perform a sensitivity analysis with regard to the distributional assumptions on the random effects and priors. The model and Bayesian approach is validated on experimental data where the concentration of a drug should be (biologically) differentially distributed between the two glands. In this example, the Bayesian model-based conclusions are found to be robust to model specification and this hierarchical approach leads to more scientifically valid conclusions than the original methodology. In particular, unlike existing methods, the proposed model based approach was not affected by a common form of outliers.