957 resultados para Microbial Glucosyltransferase
Resumo:
The Amon mud volcano (MV), located at 1250 m water depth on the Nile Deep Sea Fan, is known for its active emission of methane and non-methane hydrocarbons into the hydrosphere. Previous investigations showed a low efficiency of hydrocarbon-degrading anaerobic microbial communities inhabiting the Amon MV center in the presence of sulphate and hydrocarbons in the seeping subsurface fluids. By comparing spatial and temporal patterns of in situ biogeochemical fluxes, temperature gradients, pore water composition and microbial activities over three years, we investigated why the activity of anaerobic hydrocarbon degraders can be low despite high energy supplies. We found that the central dome of the Amon MV, as well as a lateral mud flow at its base, showed signs of recent exposure of hot subsurface muds lacking active hydrocarbon degrading communities. In these highly disturbed areas, anaerobic degradation of methane was less than 2% of the methane flux. Rather high oxygen consumption rates compared to low sulphide production suggest a faster development of more rapidly growing aerobic hydrocarbon degraders in highly disturbed areas. In contrast, the more stabilized muds surrounding the central gas and fluid conduits hosted active anaerobic hydrocarbon-degrading microbial communities. Furthermore, within three years, cell numbers and hydrocarbon degrading activity increased at the gas-seeping sites. The low microbial activity in the hydrocarbon-vented areas of Amon mud volcano is thus a consequence of kinetic limitations by heat and mud expulsion, whereas most of the outer mud volcano area is limited by hydrocarbon transport.
Resumo:
Mode of access: Internet.
Resumo:
"Contract No. AT(04-3)-502."
Resumo:
At head of title: National Library of Medicine, Reference Services Division, Reference Section.
Resumo:
"HWRIC project HWR 86-010."
Resumo:
"August 1998" -- Cover.
Resumo:
Nitrifying bacteria were selected from shrimp farm water and sediment (natural seed) in Thailand and from commercial seed cultures. The microbial consortia from each source giving the best ammonia removal during batch culture pre-enrichments were used as inocula for two sequencing batch reactors (SBRs). Nitrifiers were cultivated in the SBRs with 100 mg NH4-N/I and artificial wastewater containing 25 ppt salinity. The two SBRs were operated at a 7 d hydraulic retention time (HRT) for 77 d after which the HRT was reduced to 3.5 d. The amounts of ammonia removed from the influent by microorganisms sourced from the natural seed were 85% and 92% for the 7 d HIRT and the 3.5 d HRT, respectively. The ammonia removals of microbial consortia from the commercial seed were 71% and 83% for these HRTs respectively. The quantity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was determined in the SBRs using the most probable number (MPN) technique. Both AOB and NOB increased in number over the long-term operation of both SBRs. According to quantitative fluorescence in situ hybridisation (FISH) probing, AOB from the natural seed and commercial seed comprised 21 +/- 2% and 30 +/- 2%, respectively of all bacteria. NOB could not be detected with currently-reported FISH probes, suggesting that novel NOB were enriched from both sources. Taken collectively, the results from this study provide an indication that the nitrifiers from shrimp farm sources are more effective at ammonia removal than those from commercial seed cultures.
Resumo:
Since the implementation of the activated sludge process for treating wastewater, there has been a reliance on chemical and physical parameters to monitor the system. However, in biological nutrient removal (BNR) processes, the microorganisms responsible for some of the transformations should be used to monitor the processes with the overall goal to achieve better treatment performance. The development of in situ identification and rapid quantification techniques for key microorganisms involved in BNR are required to achieve this goal. This study explored the quantification of Nitrospira, a key organism in the oxidation of nitrite to nitrate in BNR. Two molecular genetic microbial quantification techniques were evaluated: real-time polymerase chain reaction (PCR) and fluorescence in situ hybridisation (FISH) followed by digital image analysis. A correlation between the Nitrospira quantitative data and the nitrate production rate, determined in batch tests, was attempted. The disadvantages and advantages of both methods will be discussed.
Resumo:
The reductive dechlorination (RD) of tetrachloroethene (PCE) to vinyl chloride (VC) and, to a lesser extent, to ethene (ETH) by an anaerobic microbial community has been investigated by studying the processes and kinetics of the main physiological components of the consortium. Molecular hydrogen, produced by methanol-utilizing acetogens, was the electron donor for the PCE RD to VC and ETH without forming any appreciable amount of other chlorinated intermediates and in the near absence of methanogenic activity. The microbial community structure of the consortium was investigated by preparing a 1 6S rDNA clone library and by fluorescence in situ hybridization (FISH). The PCR primers used in the clone library allowed the harvest of 16SrDNA from both bacterial and archaeal members in the community. A total of 616 clones were screened by RFLP analysis of the clone inserts followed by the sequencing of RFLP group representatives and phylogenetic analysis. The clone library contained sequences mostly from hitherto undescribed bacteria. No sequences similar to those of the known RD bacteria like 'Dehalococcoides ethenogenes' or Dehalobacter restrictus were found in the clone library, and none of these bacteria was present in the RD consortium according to FISH. Almost all clones fell into six previously described phyla of the bacterial domain, with the majority (56(.)6%) being deep-branching members of the Spirochaetes phylum. Other clones were in the Firmicutes phylum (18(.)5%), the Chloroflexi phylum (16(.)4%), the Bacteroidetes phylum (6(.)3%), the Synergistes genus (11(.)1%) and a lineage that could not be affiliated with existing phyla (11(.)1%). No archaeal clones were found in the clone library. Owing to the phylogenetic novelty of the microbial community with regard to previously cultured microorganisms, no specific microbial component(s) could be hypothetically affiliated with the RD phenotype. The predominance of Spirochaetes in the microbial consortium, the main group revealed by clone library analysis, was confirmed by FISH using a purposely developed probe.