905 resultados para Metallic Corrugated Horns
Resumo:
RATIONALE: Induction of oxidative stress and impairment of the antioxidant defense are considered important biological responses following nanoparticle (NP) exposure. The acellular in vitro dithiothreitol (DTT) assay is proposed to measure the oxidative potential of NP. In addition, DTT can be considered as a model compound of sulfur containing antioxidants. The objective of this work is to evaluate the surface reactivity in solution of a NP panel toward DTT. METHOD: The NP panel was composed of four carbonaceous particles, six types of metal oxides and silver with primary size ranged from 7 to 300 nm. Suspensions were prepared in surfactant solution with 30 min sonication. DTT was used as reductant to evaluate the oxidative properties of the different NP. The determination of the NP ability to catalyze electron transfer from DTT to oxygen was carried out as described in Sauvain et al., Nanotoxicology, 2008, 2:3, 121−129. RESULTS: All the carbonaceous NP catalyzed the oxidation of DTT by oxygen following the mass based order: carbon black > diesel exhaust particle > nanotubes > fullerene. A contrasting reactivity was observed for the metallic NP. Except for nickel oxide and metallic silver, which reacted similarly to the carbonaceous NP, all other metal oxides hindered the oxidation of DTT by oxygen, with ZnO being the most effective one. CONCLUSIONS : DTT was stabilized against oxidation in the presence of metal oxide NP in the solution. This suggests that different chemical interactions take place compared with carbonaceous NP. To explain these differences, we hypothesize that DTT could form complexes with the metal oxide surface (or dissolved metal ions), rendering it less susceptible to oxidation. By analogy, such a process could be thought to apply in biological systems with sulfur−containing antioxidants, reducing their buffer capacity. Such NP could thus contribute to oxidative stress by an alternative mechanism.
Resumo:
Background and Aims: The international EEsAI study group aims to develop, validate and evaluate the first pediatric EoE activity index (ped-EEsAI). We report on results of phase 1, which aims to generate candidate items. Methods: This study involves 3 phases: (1) item generation, (2) index derivation and testing on a first patient cohort, and (3) validation in a second cohort. In phase 1, item generation, weighting and reduction are achieved through a Delphi process with an international EoE expert group. The experts proposed and ranked candidate items on a 7-point Likert scale (0 = no, 6 = perfect relationship with EoE activity). Results: 23 international EoE experts proposed and ranked 39 items (20 clinical, 6 endoscopic, 8 histologic, 5 laboratory items). Rank order for clinical items: dysphagia related to food consistencies (median 5, range 2-6), severity of dysphagia (5, 3-6), frequency of dysphagia episodes (5, 3-6), regurgitation and vomiting (4, 2-5), response to dietary restrictions (4, 1-6); endoscopic items: whitish exudates (5, 3-6), furrowing (4, 3-6), corrugated rings (4, 2-6), linear shearing (4, 2-6), strictures (3, 2-6); histologic items: intraepithelial eosinophil count (5, 4-6), lamina propria fibrosis (3, 2-6), basal layer enlargement (3, 1-5); laboratory items: % blood eosinophils (3, 0-5). Conclusions: These items will now be reduced in further Delphi rounds, tested on a cohort of 100 pediatric EoE patients and validated in a second independent cohort, resulting in a robust, broadly accepted disease activity index for use in clinical trials and daily care.
Resumo:
The emerald ash borer (EAB) is a very small but very destructive beetle. Metallic green in color, its slender body measures 1/2 inch in length and 1/8 inch wide. The average adult
Resumo:
In the past, culvert pipes were made only of corrugated metal or reinforced concrete. In recent years, several manufacturers have made pipe of lightweight plastic - for example, high density polyethylene (HDPE) - which is considered to be viscoelastic in its structural behavior. It appears that there are several highway applications in which HDPE pipe would be an economically favorable alternative. However, the newness of plastic pipe requires the evaluation of its performance, integrity, and durability; A review of the Iowa Department of Transportation Standard Specifications for Highway and Bridge Construction reveals limited information on the use of plastic pipe for state projects. The objective of this study was to review and evaluate the use of HDPE pipe in roadway applications. Structural performance, soil-structure interaction, and the sensitivity of the pipe to installation was investigated. Comprehensive computerized literature searches were undertaken to define the state-of-the-art in the design and use of HDPE pipe in highway applications. A questionnaire was developed and sent to all Iowa county engineers to learn of their use of HDPE pipe. Responses indicated that the majority of county engineers were aware of the product but were not confident in its ability to perform as well as conventional materials. Counties currently using HDPE pipe in general only use it in driveway crossings. Originally, we intended to survey states as to their usage of HDPE pipe. However, a few weeks after initiation of the project, it was learned that the Tennessee DOT was in the process of making a similar survey of state DOT's. Results of the Tennessee survey of states have been obtained and included in this report. In an effort to develop more confidence in the pipe's performance parameters, this research included laboratory tests to determine the ring and flexural stiffness of HDPE pipe provided by various manufacturers. Parallel plate tests verified all specimens were in compliance with ASTM specifications. Flexural testing revealed that pipe profile had a significant effect on the longitudinal stiffness and that strength could not be accurately predicted on the basis of diameter alone. Realizing that the soil around a buried HDPE pipe contributes to the pipe stiffness, the research team completed a limited series of tests on buried 3 ft-diameter HDPE pipe. The tests simulated the effects of truck wheel loads above the pipe and were conducted with two feet of cover. These tests indicated that the type and quality of backfill significantly influences the performance of HDPE pipe. The tests revealed that the soil envelope does significantly affect the performance of HDPE pipe in situ, and after a certain point, no additional strength is realized by increasing the quality of the backfill.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
The objective of this work was to test a closed soilless growing system for producing bare root transplants and runner tips of two strawberry clones, using two categories of substrates. The system used corrugated roofing panels of fiber-cement, over which a substrate layer was used as a growing bed. The nutrient solution was pumped from a reservoir toward the upper end of the roofing panels and drained back to a reservoir. Plant growth and development were determined for two advanced strawberry clones, grown in sand or in Plantmax organic substrate. Growth of the stock plants and the number and dry mass of bare root transplants were similar in the substrates, but bare roots differed in their crown diameters by substrate. For number of runner tips, no significant differences were found in total, small, and medium categories in the substrates. A mean production of about 590 runner tips per square meter and 145 bare root transplants per square meter was obtained. For both clones, a large number of bare root transplants and runner tips of adequate size were produced in the closed soilless growing system using sand or organic substrate.
Resumo:
Our objective was to evaluate efficacy and patency of metallic stent placement for symptomatic Budd-Chiari syndrome (BCS) due to prothrombotic disorders. Eleven patients with proved BCS due to prothrombotic disorders were referred for endovascular treatment because of refractory ascites (n=9), abdominal pain (n=8), jaundice (n=6), and/or gastrointestinal bleeding (n=4). Stents were inserted for stenosed hepatic vein (n=7), inferior vena cava (n=2), or mesenterico-caval shunt (n=2). Clinical efficacy and stent patency was evaluated by clinical and Doppler follow-up. After a mean follow-up of 21 months, 6 patients had fully patent stents without reintervention (primary stent patency: 55%). Two patients with hepatic vein stenosis had stent thrombosis and died 4 months after procedure. Restenosis occurred in 3 cases (2 hepatic vein and 1 mesenterico-caval shunt stenosis) and were successfully treated by balloon angioplasty (n=2) and addition of new stents (n=1) leading to a 82% secondary stent patency. Of 9 patients with patent stent, 7 were asymptomatic (77%) at the end of the study. Stent placement is a safe and effective procedure to control of symptomatic BCS. Prothrombotic disorder does not seem to jeopardize patency in anticoagulated patients.
Resumo:
BACKGROUND: Biodegradable polymers for release of antiproliferative drugs from metallic drug-eluting stents aim to improve long-term vascular healing and efficacy. We designed a large scale clinical trial to compare a novel thin strut, cobalt-chromium drug-eluting stent with silicon carbide-coating releasing sirolimus from a biodegradable polymer (O-SES, Orsiro; Biotronik, Bülach, Switzerland) with the durable polymer-based Xience Prime/Xpedition everolimus-eluting stent (EES) (Xience Prime/Xpedition stent, Abbott Vascular, IL) in an all-comers patient population. DESIGN: The multicenter BIOSCIENCE trial (NCT01443104) randomly assigned 2,119 patients to treatment with biodegradable polymer sirolimus-eluting stents (SES) or durable polymer EES at 9 sites in Switzerland. Patients with chronic stable coronary artery disease or acute coronary syndromes, including non-ST-elevation and ST-elevation myocardial infarction, were eligible for the trial if they had at least 1 lesion with a diameter stenosis >50% appropriate for coronary stent implantation. The primary end point target lesion failure (TLF) is a composite of cardiac death, target vessel myocardial infarction, and clinically driven target lesion revascularization within 12 months. Assuming a TLF rate of 8% at 12 months in both treatment arms and accepting 3.5% as a margin for noninferiority, inclusion of 2,060 patients would provide more than 80% power to detect noninferiority of the biodegradable polymer SES compared with the durable polymer EES at a 1-sided type I error of 0.05. Clinical follow-up will be continued through 5 years. CONCLUSION: The BIOSCIENCE trial will determine whether the biodegradable polymer SES is noninferior to the durable polymer EES with respect to TLF.
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
(I): Hexaaquacobalt(II) aqua[ethylenediaminetetraacetato(3-)]cobaltate(II) dihydrate, [Co(H2O)6][Co(C10H13N2O8)(H2O)]2.2H2O (Ibis): Hexaaquamagnesium(II) aqua[ethylenediaminetetraacetato(3-)]magnesiate(II) dihydrate, [Mg(H2O)6][Mg(C10H13N2O8)(H2O)]2.2H2O (II):Tetraaquabis{aqua[ethylenediaminetetraacetato(3-)]cadmium(II)-O-O'}Cadmium(II) tetrahydrate
Resumo:
In cases of transjugular liver biopsies, the venous angle formed between the chosen hepatic vein and the vena cava main axis in a frontal plane can be large, leading to technical difficulties. In a prospective study including 139 consecutive patients who underwent transjugular liver biopsy using the Quick-Core biopsy set, the mean venous angle was equal to 49.6 degrees. For 21.1% of the patients, two attempts at hepatic venous catheterization failed because the venous angle was too large, with a mean of 69.7 degrees. In all of these patients, manual reshaping of the distal curvature of the stiffening metallic cannula, by forming a new mean angle equal to 48 degrees , allowed successful completion of the procedure in less than 10 min.
Resumo:
Background, aim, and scope A coupled Life Cycle Costing and life cycle assessment has been performed for car-bodies of the Korean Tilting Train eXpress (TTX) project using European and Korean databases, with the objective of assessing environmental and cost performance to aid materials and process selection. More specifically, the potential of polymer composite car-body structures for the Korean Tilting Train eXpress (TTX) has been investigated. Materials and methods This assessment includes the cost of both carriage manufacturing and use phases, coupled with the life cycle environmental impacts of all stages from raw material production, through carriage manufacture and use, to end-of-life scenarios. Metallic carriages were compared with two composite options: hybrid steel-composite and full-composite carriages. The total planned production for this regional Korean train was 440 cars, with an annual production volume of 80 cars. Results and discussion The coupled analyses were used to generate plots of cost versus energy consumption and environmental impacts. The results show that the raw material and manufacturing phase costs are approximately half of the total life cycle costs, whilst their environmental impact is relatively insignificant (3-8%). The use phase of the car-body has the largest environmental impact for all scenarios, with near negligible contributions from the other phases. Since steel rail carriages weigh more (27-51%), the use phase cost is correspondingly higher, resulting in both the greatest environmental impact and the highest life cycle cost. Compared to the steel scenario, the hybrid composite variant has a lower life cycle cost (16%) and a lower environmental impact (26%). Though the full composite rail carriage may have the highest manufacturing cost, it results in the lowest total life cycle costs and lowest environmental impacts. Conclusions and recommendations This coupled cost and life cycle assessment showed that the full composite variant was the optimum solution. This case study showed that coupling of technical cost models with life cycle assessment offers an efficient route to accurately evaluate economic and environmental performance in a consistent way.
Resumo:
The spatial resolution visualized with hydrological models and the conceptualized images of subsurface hydrological processes often exceed resolution of the data collected with classical instrumentation at the field scale. In recent years it was possible to increasingly diminish the inherent gap to information from point like field data through the application of hydrogeophysical methods at field-scale. With regards to all common geophysical exploration techniques, electric and electromagnetic methods have arguably to greatest sensitivity to hydrologically relevant parameters. Of particular interest in this context are induced polarisation (IP) measurements, which essentially constrain the capacity of a probed subsurface region to store an electrical charge. In the absence of metallic conductors the IP- response is largely driven by current conduction along the grain surfaces. This offers the perspective to link such measurements to the characteristics of the solid-fluid-interface and thus, at least in unconsolidated sediments, should allow for first-order estimates of the permeability structure.¦While the IP-effect is well explored through laboratory experiments and in part verified through field data for clay-rich environments, the applicability of IP-based characterizations to clay-poor aquifers is not clear. For example, polarization mechanisms like membrane polarization are not applicable in the rather wide pore-systems of clay free sands, and the direct transposition of Schwarz' theory relating polarization of spheres to the relaxation mechanism of polarized cells to complex natural sediments yields ambiguous results.¦In order to improve our understanding of the structural origins of IP-signals in such environments as well as their correlation with pertinent hydrological parameters, various laboratory measurements have been conducted. We consider saturated quartz samples with a grain size spectrum varying from fine sand to fine gravel, that is grain diameters between 0,09 and 5,6 mm, as well as corresponding pertinent mixtures which can be regarded as proxies for widespread alluvial deposits. The pore space characteristics are altered by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples, while keeping any electrochemical variability during the measurements as small as possible. The results do not follow simple assumptions on relationships to single parameters such as grain size. It was found that the complexity of natural occurring media is not yet sufficiently represented when modelling IP. At the same time simple correlation to permeability was found to be strong and consistent. Hence, adaptations with the aim of better representing the geo-structure of natural porous media were applied to the simplified model space used in Schwarz' IP-effect-theory. The resulting semi- empiric relationship was found to more accurately predict the IP-effect and its relation to the parameters grain size and permeability. If combined with recent findings about the effect of pore fluid electrochemistry together with advanced complex resistivity tomography, these results will allow us to picture diverse aspects of the subsurface with relative certainty. Within the framework of single measurement campaigns, hydrologiste can than collect data with information about the geo-structure and geo-chemistry of the subsurface. However, additional research efforts will be necessary to further improve the understanding of the physical origins of IP-effect and minimize the potential for false interpretations.¦-¦Dans l'étude des processus et caractéristiques hydrologiques des subsurfaces, la résolution spatiale donnée par les modèles hydrologiques dépasse souvent la résolution des données du terrain récoltées avec des méthodes classiques d'hydrologie. Récemment il est possible de réduire de plus en plus cet divergence spatiale entre modèles numériques et données du terrain par l'utilisation de méthodes géophysiques, notamment celles géoélectriques. Parmi les méthodes électriques, la polarisation provoquée (PP) permet de représenter la capacité des roches poreuses et des sols à stocker une charge électrique. En l'absence des métaux dans le sous-sol, cet effet est largement influencé par des caractéristiques de surface des matériaux. En conséquence les mesures PP offrent une information des interfaces entre solides et fluides dans les matériaux poreux que nous pouvons lier à la perméabilité également dirigée par ces mêmes paramètres. L'effet de la polarisation provoquée à été étudié dans différentes études de laboratoire, ainsi que sur le terrain. A cause d'une faible capacité de polarisation des matériaux sableux, comparé aux argiles, leur caractérisation par l'effet-PP reste difficile a interpréter d'une manière cohérente pour les environnements hétérogènes.¦Pour améliorer les connaissances sur l'importance de la structure du sous-sol sableux envers l'effet PP et des paramètres hydrologiques, nous avons fait des mesures de laboratoire variées. En détail, nous avons considéré des échantillons sableux de quartz avec des distributions de taille de grain entre sables fins et graviers fins, en diamètre cela fait entre 0,09 et 5,6 mm. Les caractéristiques de l'espace poreux sont changées en modifiant (i) la distribution de taille des grains, (ii) le degré de compaction, et (iii) le niveau d'hétérogénéité dans la distribution de taille de grains. En suite nous étudions comment ces changements influencent l'effet-PP, la perméabilité et la surface spécifique des échantillons. Les paramètres électrochimiques sont gardés à un minimum pendant les mesures. Les résultats ne montrent pas de relation simple entre les paramètres pétro-physiques comme par exemples la taille des grains. La complexité des media naturels n'est pas encore suffisamment représenté par les modèles des processus PP. Néanmoins, la simple corrélation entre effet PP et perméabilité est fort et consistant. En conséquence la théorie de Schwarz sur l'effet-PP a été adapté de manière semi-empirique pour mieux pouvoir estimer la relation entre les résultats de l'effet-PP et les paramètres taille de graines et perméabilité. Nos résultats concernant l'influence de la texture des matériaux et celles de l'effet de l'électrochimie des fluides dans les pores, permettront de visualiser des divers aspects du sous-sol. Avec des telles mesures géo-électriques, les hydrologues peuvent collectionner des données contenant des informations sur la structure et la chimie des fluides des sous-sols. Néanmoins, plus de recherches sur les origines physiques de l'effet-PP sont nécessaires afin de minimiser le risque potentiel d'une mauvaise interprétation des données.
Resumo:
We report Monte Carlo results for a nonequilibrium Ising-like model in two and three dimensions. Nearest-neighbor interactions J change sign randomly with time due to competing kinetics. There follows a fast and random, i.e., spin-configuration-independent diffusion of Js, of the kind that takes place in dilute metallic alloys when magnetic ions diffuse. The system exhibits steady states of the ferromagnetic (antiferromagnetic) type when the probability p that J>0 is large (small) enough. No counterpart to the freezing phenomena found in quenched spin glasses occurs. We compare our results with existing mean-field and exact ones, and obtain information about critical behavior.