982 resultados para Metabolically healthy obese (MHO)
Resumo:
To assess the effect of weight loss on resting metabolic rate (RMR), the energy expenditure of eight obese prepubertal children (age 9 +/- 1 years; weight 48.7 +/- 9.1 kg; BMI 25.3 +/- 3.9) and of 14 age-matched children of normal body weight (age 9 +/- 1 years; weight 28.8 +/- 5.6 kg; BMI 16.5 +/- 1.7) was measured by indirect calorimetry. The obese children were reinvestigated after a mean weight loss of 5.4 +/- 1.2 kg induced by a six-months mixed hypocaloric diet. Before slimming, the obese group showed a higher daily energy intake than the control group (10.40 +/- 3.45 MJ/day vs 7.97 +/- 2.02 MJ/day respectively; P less than 0.05) but a similar value was observed per unit fat-free mass (FFM) (0.315 +/- 0.032 MJ/kgFFM/day vs 0.329 +/- 0.041 MJ/kgFFM/day respectively). The average RMR of the obese children was greater than that of the control group (5217 +/- 531 kJ/day vs 4477 +/- 506 kJ/day) but similar after adjusting for FFM (4728 +/- 3102 kJ/day vs 4899 +/- 3102 kJ/day). Weight loss resulted in a reduction in RMR (5217 +/- 531 kJ/day vs 4874 +/- 820 kJ/day), each kg of weight loss being accompanied by a decrease of RMR of 64 kJ (15.3 kcal) per day. The changes in RMR induced by weight loss paralleled the changes in FFM. No difference was found in average RQ in obese children vs controls (0.85 +/- 0.03 vs 0.87 +/- 0.03 respectively) and in the obese children before and after weight loss (0.87 +/- 0.02).(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
OBJECTIVE: To assess the thermogenic response of dopamine at three different infusion rates and to analyze its effects on various biochemical variables. DESIGN: Randomized sequential experimental treatment bracketed by control periods. PATIENTS: Eight young healthy male volunteers with normal body weight (51 to 89 kg). INTERVENTIONS: Three experimental periods during which dopamine was administered iv in a randomized order at rates of 2.5, 5, or 10 micrograms/kg.min with one preinfusion baseline and two recovery periods in between. MEASUREMENTS AND MAIN RESULTS: A significant (p less than .01) increase in resting energy expenditure was observed in response to the two highest dopamine infusion rates (5 and 10 micrograms/kg.min), corresponding to 6% and 15% median increases, respectively, as compared with preinfusion values. At the lowest dopamine infusion rate, no variation in resting energy expenditure was observed. Dopamine induced a significant (p less than .01) increase in hyperglycemia at all three infusion rates, and, at the highest infusion rate, dopamine induced a significant (p less than .05) increase of plasma free fatty acid concentrations. Insulin plasma concentrations were significantly (p less than .05 to p less than 0.1) increased at the three dopamine infusion rates. CONCLUSIONS: Dopamine infusion produces a dose-dependent thermogenic effect and induces various metabolic actions in man.
Resumo:
High-fructose diet stimulates hepatic de novo lipogenesis (DNL) and causes hypertriglyceridemia and insulin resistance in rodents. Fructose-induced insulin resistance may be secondary to alterations of lipid metabolism. In contrast, fish oil supplementation decreases triglycerides and may improve insulin resistance. Therefore, we studied the effect of high-fructose diet and fish oil on DNL and VLDL triglycerides and their impact on insulin resistance. Seven normal men were studied on four occasions: after fish oil (7.2 g/day) for 28 days; a 6-day high-fructose diet (corresponding to an extra 25% of total calories); fish oil plus high-fructose diet; and control conditions. Following each condition, fasting fractional DNL and endogenous glucose production (EGP) were evaluated using [1-13C]sodium acetate and 6,6-2H2 glucose and a two-step hyperinsulinemic-euglycemic clamp was performed to assess insulin sensitivity. High-fructose diet significantly increased fasting glycemia (7 +/- 2%), triglycerides (79 +/- 22%), fractional DNL (sixfold), and EGP (14 +/- 3%, all P < 0.05). It also impaired insulin-induced suppression of adipose tissue lipolysis and EGP (P < 0.05) but had no effect on whole- body insulin-mediated glucose disposal. Fish oil significantly decreased triglycerides (37%, P < 0.05) after high-fructose diet compared with high-fructose diet without fish oil and tended to reduce DNL but had no other significant effect. In conclusion, high-fructose diet induced dyslipidemia and hepatic and adipose tissue insulin resistance. Fish oil reversed dyslipidemia but not insulin resistance.
Resumo:
The aim of the study was to assess the effects of physical fitness on the relationships between body mass index (BMI) and body fat (BF) on blood pressure (BP) levels. Cross-sectional study conducted in 25 schools of Lisbon (Portugal), including 2041 boys and 1995 girls aged 10-18. BF was assessed by bioimpedance. Cardiovascular fitness was assessed by the 20-meter shuttle run and classified as fit/unfit. Obesity (BMI or BF defined) was defined according to international criteria. In both sexes, BMI was positively related with systolic and diastolic BP, while BF was only positively related with diastolic BP z-scores. No interaction was found between fitness and BMI categories regarding BP levels, while for BF a significant interaction was found. Being fit reduced the BF-induced increase in the Odds ratio (OR) of presenting with high BP: OR (95% confidence interval) 1.01 (0.73-1.40) and 0.99 (0.70-1.38) for overweight and obese fit boys, respectively, the corresponding values for unfit overweight and obese boys being 1.33 (0.94-1.90) and 1.75 (1.34-2.28), respectively. The values were 0.88 (0.57-1.35) and 1.66 (0.98-2.80) for overweight and obese fit girls, respectively, the corresponding values for unfit overweight and obese being 1.63 (1.12-2.37) and 1.90 (1.32-2.73) respectively. No interaction was found between fitness and BMI-defined overweight and obesity. Being fit reduces the negative impact of BF on BP levels and high BP status in adolescents. This protective effect was not found with BMI.
Resumo:
BACKGROUND: Mycoplasma hominis is a fastidious micro-organism causing systemic infections in the neonate and genital infections in the adult. It can also be the cause of serious extra-genital infections, mainly in immunosuppressed or predisposed subjects. CASE PRESENTATION: We describe a case of severe pneumonia and pericarditis due to Mycoplasma hominis in a previously healthy adolescent who did not respond to initial therapy. CONCLUSIONS: Mycoplasma hominis could be an underestimated cause of severe pneumonia in immunocompetent patients and should be particularly suspected in those not responding to standard therapy.
Resumo:
A dose-response strategy may not only allow investigation of the impact of foods and nutrients on human health but may also reveal differences in the response of individuals to food ingestion based on their metabolic health status. In a randomized crossover study, we challenged 19 normal-weight (BMI: 20-25 kg/m(2)) and 18 obese (BMI: >30 kg/m(2)) men with 500, 1000, and 1500 kcal of a high-fat (HF) meal (60.5% energy from fat). Blood was taken at baseline and up to 6 h postprandially and analyzed for a range of metabolic, inflammatory, and hormonal variables, including plasma glucose, lipids, and C-reactive protein and serum insulin, glucagon-like peptide-1, interleukin-6 (IL-6), and endotoxin. Insulin was the only variable that could differentiate the postprandial response of normal-weight and obese participants at each of the 3 caloric doses. A significant response of the inflammatory marker IL-6 was only observed in the obese group after ingestion of the HF meal containing 1500 kcal [net incremental AUC (iAUC) = 22.9 ± 6.8 pg/mL × 6 h, P = 0.002]. Furthermore, the net iAUC for triglycerides significantly increased from the 1000 to the 1500 kcal meal in the obese group (5.0 ± 0.5 mmol/L × 6 h vs. 6.0 ± 0.5 mmol/L × 6 h; P = 0.015) but not in the normal-weight group (4.3 ± 0.5 mmol/L × 6 h vs. 4.8 ± 0.5 mmol/L × 6 h; P = 0.31). We propose that caloric dose-response studies may contribute to a better understanding of the metabolic impact of food on the human organism. This study was registered at clinicaltrials.gov as NCT01446068.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.
Resumo:
This bimonthly electronic newsletter will provide information and resources on nutrition and health promotion and disease prevention. The Healthy Aging Update is produced for informal and educational purposes only. The newsletter will be distributed electronically and posted on the Department’s website at www.state.ia.us/elderaffairs.