956 resultados para Mediterranean dry grasslands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article revisits the Neolithic transition in Mediterranean Iberia taking into account an aspect usually neglected in the archaeological discourse: the rock art styles that emerged in this context. These distinct styles have been generally attributed to different populations, according to a historicist point of view that equates stylistic variability and ethnic identity. However, the recent recognition that they were developed by the same social group requires the formulation of an alternative explanation. My proposal is based on the exploration of the social context of production and consumption of the rock art, through the analysis of the patterns of location of the sites within the landscape and the definition of their archaeological context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The southern Levant has a long history of human habitation and it has been previously suggested that climatic changes during the Late Pleistocene-Holocene stimulated changes in human behaviour and society. In order to evaluate such linkages, it is necessary to have a detailed understanding of the climate record. We have conducted an extensive and up-to-date review of terrestrial and marine climatic conditions in the Levant and Eastern Mediterranean during the last 25,000 years. We firstly present data from general circulation models (GCMs) simulating the climate for the last glacial maximum (LGM), and evaluate the output of the model by reference to geological climate proxy data. We consider the types of climate data available from different environments and proxies and then present the spatial climatic "picture" for key climatic events. This exercise suggests that the major Northern Hemisphere climatic fluctuations of the last 25,000 years are recorded in the Eastern Mediterranean and Levantine region. However, this review also highlights problems and inadequacies with the existing data. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to map vegetation communities over large areas for nature conservation and to predict the impact of environmental change on vegetation distributions, has stimulated the development of techniques for predictive vegetation mapping. Predictive vegetation studies start with the development of a model relating vegetation units and mapped physical data, followed by the application of that model to a geographic database and over a wide range of spatial scales. This field is particularly important for identifying sites for rare and endangered species and locations of high biodiversity such as many areas of the Mediterranean Basin. The potential of the approach is illustrated with a mapping exercise in the alti-meditterranean zone of Lefka Ori in Crete. The study established the nature of the relationship between vegetation communities and physical data including altitude, slope and geomorphology. In this way the knowledge of community distribution was improved enabling a GIS-based model capable of predicting community distribution to be constructed. The paper describes the development of the spatial model and the methodological problems of predictive mapping for monitoring Mediterranean ecosystems. The paper concludes with a discussion of the role of predictive vegetation mapping and other spatial techniques, such as fuzzy mapping and geostatistics, for improving our understanding of the dynamics of Mediterranean ecosystems and for practical management in a region that is under increasing pressure from human impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mediterranean ecosystems rival tropical ecosystems in terms of plant biodiversity. The Mediterranean Basin (MB) itself hosts 25 000 plant species, half of which are endemic. This rich biodiversity and the complex biogeographical and political issues make conservation a difficult task in the region. Species, habitat, ecosystem and landscape approaches have been used to identify conservation targets at various scales: ie, European, national, regional and local. Conservation decisions require adequate information at the species, community and habitat level. Nevertheless and despite recent improvements/efforts, this information is still incomplete, fragmented and varies from one country to another. This paper reviews the biogeographic data, the problems arising from current conservation efforts and methods for the conservation assessment and prioritization using GIS. GIS has an important role to play for managing spatial and attribute information on the ecosystems of the MB and to facilitate interactions with existing databases. Where limited information is available it can be used for prediction when directly or indirectly linked to externally built models. As well as being a predictive tool today GIS incorporate spatial techniques which can improve the level of information such as fuzzy logic, geostatistics, or provide insight about landscape changes such as 3D visualization. Where there are limited resources it can assist with identifying sites of conservation priority or the resolution of environmental conflicts (scenario building). Although not a panacea, GIS is an invaluable tool for improving the understanding of Mediterranean ecosystems and their dynamics and for practical management in a region that is under increasing pressure from human impact.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to couple a nitrogen (N) sub-model to already existent hydrological lumped (LU4-N) and semi-distributed (LU4-R-N and SD4-R-N) conceptual models, to improve our understanding of the factors and processes controlling nitrogen cycling and losses in Mediterranean catchments. The N model adopted provides a simplified conceptualization of the soil nitrogen cycle considering mineralization, nitrification, immobilization, denitrification, plant uptake, and ammonium adsorption/desorption. It also includes nitrification and denitrification in the shallow perched aquifer. We included a soil moisture threshold for all the considered soil biological processes. The results suggested that all the nitrogen processes were highly influenced by the rain episodes and that soil microbial processes occurred in pulses stimulated by soil moisture increasing after rain. Our simulation highlighted the riparian zone as a possible source of nitrate, especially after the summer drought period, but it can also act as an important sink of nitrate due to denitrification, in particular during the wettest period of the year. The riparian zone was a key element to simulate the catchment nitrate behaviour. The lumped LU4-N model (which does not include the riparian zone) could not be validated, while both the semi-distributed LU4-R-N and SD4-R-N model (which include the riparian zone) gave satisfactory results for the calibration process and acceptable results for the temporal validation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthropogenic changes in precipitation pose a serious threat to society—particularly in regions such as the Middle East that already face serious water shortages. However, climate model projections of regional precipitation remain highly uncertain. Moreover, standard resolution climate models have particular difficulty representing precipitation in the Middle East, which is modulated by complex topography, inland water bodies and proximity to the Mediterranean Sea. Here we compare precipitation changes over the twenty-first century against both millennial variability during the Holocene and interannual variability in the present day. In order to assess the climate model and to make consistent comparisons, this study uses new regional climate model simulations of the past, present and future in conjunction with proxy and historical observations. We show that the pattern of precipitation change within Europe and the Middle East projected by the end of the twenty-first century has some similarities to that which occurred during the Holocene. In both cases, a poleward shift of the North Atlantic storm track and a weakening of the Mediterranean storm track appear to cause decreased winter rainfall in southern Europe and the Middle East and increased rainfall further north. In contrast, on an interannual time scale, anomalously dry seasons in the Middle East are associated with a strengthening and focusing of the storm track in the north Mediterranean and hence wet conditions throughout southern Europe.