655 resultados para McManus
Resumo:
Site 42 is one of the series of sites selected by the Pacific Advisory Panel along the 140th meridian to sample the longitudinal variation in sediment composition in the eastern Pacific. The site is located in an area of abyssal hills between the Clarion and Clipperton Fracture Zones, and is at the northern margin of the thick development of acoustically transparent sediment extending along the equator.
Resumo:
Site 40 was located by the JOIDES Pacific Advisory Panel in the region between the Molokai and Clarion Fracture Zones with the objective of recovering a continuous sediment core for the paleontologic and biostratigraphic study of the variation in sediment components at the transition between the North Pacific gyral and the Equatorial Current System.
Resumo:
Site 39 was located in the region between the Pioneer and Murray Fracture Zones, with the objective of recovering a continuous sediment core for paleontologic and stratigraphic study of the longitudinal variations in sediment components in the eastern Pacific. This site was selected, together with the adjacent ones in the north-south line along 140°W, to provide information on the geologic history of the North Pacific gyral, insofar as this might be recorded in the sediments.
Resumo:
The proposed location of Site 33 was over north-south Magnetic Anomaly 10 (Pittman-Heirtzler, 32 million years) in order (a) to provide a basis for comparison of the age of the basal sediments with the age based on the magnetic anomaly, (b) to provide a basis for evaluation of relative movement along the Pioneer and Mendocino Fracture Zones, and (c) by being paired with Site 34, to provide comparison of basement materials for adjacent positive and negative magnetic anomalies.
Resumo:
Site 41 marks the transition from the North Pacific gyral to the Equatorial Current System. The JOIDES Pacific Advisory Panel selected a site at this latitude along the longitudinal profile of 140°W in order to obtain information on the history of migrations of these current systems.
Resumo:
Site 34 had been located by the JOIDES Pacific Advisory Panel to be over a negative magnetic anomaly (31 million years B.P.) immediately to the east of Anomaly 10 (Site 33). The primary objective was to obtain samples of basement and basal sediment to provide comparison between adjacent positive and negative magnetic anomalies. A second objective was to obtain samples which would permit an analysis of the variability in sediment over relatively short distances (about 10 miles). Although basement had not been reached at Site 33 because of the unexpected chert, the use of a massive diamond bit at Site 34 permitted coring through the chert to basement at 383 meters below the sea floor. Even though the near basement sections of the paired sites (33 and 34) could not be compared, comparison would be possible above the chert layer.
Resumo:
The JOIDES Pacific Advisory Panel proposed Site 37 to meet two principal objectives: to determine the significance of the magnetic anomaly pattern, and the longitudinal profile of the sediment sequence in the eastern Pacific. Site 37 was to be located on the same magnetic anomaly as was Site 33 (#10, 32 million years age), for comparison across the intervening Mendocino Fracture Zone. As basement had not been reached at Site 33, this objective could not be met specifically. However, sediment comparison across the fracture zone was possible.
Resumo:
Site 32 was proposed by the Pacific Advisory Panel at a location over a strong positive magnetic anomaly (Number 13 on the Pittman-Heirtzler scale, 38 million years) where samples of the basement and the basal sediment would be of value in testing hypotheses for origin of the linear magnetic anomalies from this part of the Pacific. Comparison of this site, south of the Pioneer Fracture Zone, with later sites north of the Fracture Zone would be the basis for evaluating the discontinuity formed by the Pioneer.
Resumo:
The nonfossiliferous nature of most of the thin sediment sequence at Site 37 had provided little biostratigraphic information for the northern end of the proposed section of sites along 140°W longitude. In an attempt to provide a biostratigraphically more meaningful hole as the high latitude terminus of the meridional section, an additional site (Site 38) was drilled between the Mendocino and Pioneer Fracture Zones.
Resumo:
The Russell Cycle is one of the classical examples of climate influence on biological oceanography, represented as shifts in the marine plankton over several decades with warm and cool conditions. While the time-series data associated with the phenomenon indicate cyclical patterns, the question remains whether or not the Russell Cycle should be considered a “true cycle”. Zooplankton time-series data from 1924 to 2011 from the western English Channel were analysed with principal component (PC), correlation and spectral analyses to determine the dominant trends, and cyclic frequencies of the Russell Cycle indicators in relation to long-term hydroclimatic indices. PC1 accounted for 37.4% of the variability in the zooplankton data with the main contributions from non-clupeid fish larvae, southwestern zooplankton, and overall zooplankton biovolume. For PC2 (14.6% of data variance), the dominant groups were northern fish larvae, non-sardine eggs, and southern fish larvae. Sardine eggs were the major contributors to PC3 (representing 12.1% of data variance). No significant correlations were observed between the above three components and climate indices: Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and local seawater temperature. Significant 44- and 29-year frequencies were observed for PC3, but the physical mechanisms driving the cycles are unclear. Harmonic analysis did not reveal any significant frequencies in the physical variables or in PCs 1 and 2. To a large extent, this is due to the dominant cycles in all datasets generally being long term (>50 years or so) and not readily resolved in the examined time frame of 88 years, hence restricting the ability to draw firm conclusions on the multidecadal relationship between zooplankton community dynamics in the western English Channel and environmental indices. Thus, the zooplankton time-series often associated and represented as the Russell Cycle cannot be concluded as being truly cyclical.
Resumo:
The Russell Cycle is one of the classical examples of climate influence on biological oceanography, represented as shifts in the marine plankton over several decades with warm and cool conditions. While the time-series data associated with the phenomenon indicate cyclical patterns, the question remains whether or not the Russell Cycle should be considered a “true cycle”. Zooplankton time-series data from 1924 to 2011 from the western English Channel were analysed with principal component (PC), correlation and spectral analyses to determine the dominant trends, and cyclic frequencies of the Russell Cycle indicators in relation to long-term hydroclimatic indices. PC1 accounted for 37.4% of the variability in the zooplankton data with the main contributions from non-clupeid fish larvae, southwestern zooplankton, and overall zooplankton biovolume. For PC2 (14.6% of data variance), the dominant groups were northern fish larvae, non-sardine eggs, and southern fish larvae. Sardine eggs were the major contributors to PC3 (representing 12.1% of data variance). No significant correlations were observed between the above three components and climate indices: Atlantic Multidecadal Oscillation, North Atlantic Oscillation, and local seawater temperature. Significant 44- and 29-year frequencies were observed for PC3, but the physical mechanisms driving the cycles are unclear. Harmonic analysis did not reveal any significant frequencies in the physical variables or in PCs 1 and 2. To a large extent, this is due to the dominant cycles in all datasets generally being long term (>50 years or so) and not readily resolved in the examined time frame of 88 years, hence restricting the ability to draw firm conclusions on the multidecadal relationship between zooplankton community dynamics in the western English Channel and environmental indices. Thus, the zooplankton time-series often associated and represented as the Russell Cycle cannot be concluded as being truly cyclical.