975 resultados para Mathematical techniques
Resumo:
Bat researchers currently use a variety of techniques that transform echolocation calls into audible frequencies and allow the spectral content of a signal to be viewed and analyzed. All techniques have limitations and an understanding of how each works and the effect on the signal being analyzed are vital for correct interpretation. The 3 most commonly used techniques for transforming frequencies of a call are heterodyne, frequency division, and time expansion. Three techniques for viewing spectral content of a signal are zero-crossing, Fourier analysis, and instantaneous frequency analysis. It is important for bat researchers to be familiar with the advantages and disadvantages of each technique.
Resumo:
One of the problems to be solved in attaining the full potentials of hematopoietic stem cell (HSC) applications is the limited availability of the cells. Growing HSCs in a bioreactor offers an alternative solution to this problem. Besides, it also offers the advantages of eliminating labour intensive process as well as the possible contamination involved in the periodic nutrient replenishments in the traditional T-flask stem cell cultivation. In spite of this, the optimization of HSC cultivation in a bioreactor has been barely explored. This manuscript discusses the development of a mathematical model to describe the dynamics in nutrient distribution and cell concentration of an ex vivo HSC cultivation in a microchannel perfusion bioreactor. The model was further used to optimize the cultivation by proposing three alternative feeding strategies in order to prevent the occurrence of nutrient limitation in the bioreactor. The evaluation of these strategies, the periodic step change increase in the inlet oxygen concentration, the periodic step change increase in the media inflow, and the feedback control of media inflow, shows that these strategies can successfully improve the cell yield of the bioreactor. In general, the developed model is useful for the design and optimization of bioreactor operation.
Resumo:
Magnetic resonance is a well-established tool for structural characterisation of porous media. Features of pore-space morphology can be inferred from NMR diffusion-diffraction plots or the time-dependence of the apparent diffusion coefficient. Diffusion NMR signal attenuation can be computed from the restricted diffusion propagator, which describes the distribution of diffusing particles for a given starting position and diffusion time. We present two techniques for efficient evaluation of restricted diffusion propagators for use in NMR porous-media characterisation. The first is the Lattice Path Count (LPC). Its physical essence is that the restricted diffusion propagator connecting points A and B in time t is proportional to the number of distinct length-t paths from A to B. By using a discrete lattice, the number of such paths can be counted exactly. The second technique is the Markov transition matrix (MTM). The matrix represents the probabilities of jumps between every pair of lattice nodes within a single timestep. The propagator for an arbitrary diffusion time can be calculated as the appropriate matrix power. For periodic geometries, the transition matrix needs to be defined only for a single unit cell. This makes MTM ideally suited for periodic systems. Both LPC and MTM are closely related to existing computational techniques: LPC, to combinatorial techniques; and MTM, to the Fokker-Planck master equation. The relationship between LPC, MTM and other computational techniques is briefly discussed in the paper. Both LPC and MTM perform favourably compared to Monte Carlo sampling, yielding highly accurate and almost noiseless restricted diffusion propagators. Initial tests indicate that their computational performance is comparable to that of finite element methods. Both LPC and MTM can be applied to complicated pore-space geometries with no analytic solution. We discuss the new methods in the context of diffusion propagator calculation in porous materials and model biological tissues.
Resumo:
The continuous changing impacts appeared in all solution understanding approaches in the projects management field (especially in the construction field of work) by adopting dynamic solution paths. The paper will define what argue to be a better relational model for project management constraints (time, cost, and scope). This new model will increase the success factors of any complex program / project. This is a qualitative research adopting a new avenue of investigation by following different approach of attributing project activities with social phenomena, and supporting phenomenon with field of observations rather than mathematical method by emerging solution from human, and ants' colonies successful practices. The results will show the correct approach of relation between the triple constraints considering the relation as multi agents system having specified communication channels based on agents locations. Information will be transferred between agents, and action would be taken based on constraint agents locations in the project structure allowing immediate changes abilities in order to overcome issues of over budget, behind schedule, and additional scope impact. This is complex adaptive system having self organizes technique, and cybernetic control. Resulted model can be used for improving existing project management methodologies.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
This project examined the potential for historical mapping of land resources to be upgraded to meet current requirements for natural resource management. The methods of spatial disaggregation used to improve the scale of mapping were novel and provide a method to rapidly improve existing information. The thesis investigated the potential to use digital soil mapping techniques and the multi-scale identification of areas within historical land systems mapping to provide enhanced information to support modern natural resource management needs. This was undertaken in the Burnett Catchment of South-East Queensland.
Resumo:
Long-term measurements of particle number size distribution (PNSD) produce a very large number of observations and their analysis requires an efficient approach in order to produce results in the least possible time and with maximum accuracy. Clustering techniques are a family of sophisticated methods which have been recently employed to analyse PNSD data, however, very little information is available comparing the performance of different clustering techniques on PNSD data. This study aims to apply several clustering techniques (i.e. K-means, PAM, CLARA and SOM) to PNSD data, in order to identify and apply the optimum technique to PNSD data measured at 25 sites across Brisbane, Australia. A new method, based on the Generalised Additive Model (GAM) with a basis of penalised B-splines, was proposed to parameterise the PNSD data and the temporal weight of each cluster was also estimated using the GAM. In addition, each cluster was associated with its possible source based on the results of this parameterisation, together with the characteristics of each cluster. The performances of four clustering techniques were compared using the Dunn index and Silhouette width validation values and the K-means technique was found to have the highest performance, with five clusters being the optimum. Therefore, five clusters were found within the data using the K-means technique. The diurnal occurrence of each cluster was used together with other air quality parameters, temporal trends and the physical properties of each cluster, in order to attribute each cluster to its source and origin. The five clusters were attributed to three major sources and origins, including regional background particles, photochemically induced nucleated particles and vehicle generated particles. Overall, clustering was found to be an effective technique for attributing each particle size spectra to its source and the GAM was suitable to parameterise the PNSD data. These two techniques can help researchers immensely in analysing PNSD data for characterisation and source apportionment purposes.
Resumo:
This thesis introduces a method of applying Bayesian Networks to combine information from a range of data sources for effective decision support systems. It develops a set of techniques in development, validation, visualisation, and application of Complex Systems models, with a working demonstration in an Australian airport environment. The methods presented here have provided a modelling approach that produces highly flexible, informative and applicable interpretations of a system's behaviour under uncertain conditions. These end-to-end techniques are applied to the development of model based dashboards to support operators and decision makers in the multi-stakeholder airport environment. They provide highly flexible and informative interpretations and confidence in these interpretations of a system's behaviour under uncertain conditions.
Resumo:
This thesis examines and compares imaging methods used during the radiotherapy treatment of prostate cancer. The studies found that radiation therapists were able to localise and target the prostate consistently with planar imaging techniques and that the use of small gold markers in the prostate reduced the variation in prostate localisation when using volumetric imaging. It was concluded that larger safety margins are required when using volumetric imaging without gold markers.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
A FitzHugh-Nagumo monodomain model has been used to describe the propagation of the electrical potential in heterogeneous cardiac tissue. In this paper, we consider a two-dimensional fractional FitzHugh-Nagumo monodomain model on an irregular domain. The model consists of a coupled Riesz space fractional nonlinear reaction-diffusion model and an ordinary differential equation, describing the ionic fluxes as a function of the membrane potential. Secondly, we use a decoupling technique and focus on solving the Riesz space fractional nonlinear reaction-diffusion model. A novel spatially second-order accurate semi-implicit alternating direction method (SIADM) for this model on an approximate irregular domain is proposed. Thirdly, stability and convergence of the SIADM are proved. Finally, some numerical examples are given to support our theoretical analysis and these numerical techniques are employed to simulate a two-dimensional fractional Fitzhugh-Nagumo model on both an approximate circular and an approximate irregular domain.
Resumo:
Railways are an important mode of transportation. They are however large and complex and their construction, management and operation is time consuming and costly. Evidently planning the current and future activities is vital. Part of that planning process is an analysis of capacity. To determine what volume of traffic can be achieved over time, a variety of railway capacity analysis techniques have been created. A generic analytical approach that incorporates more complex train paths however has yet to be provided. This article provides such an approach. This article extends a mathematical model for determining the theoretical capacity of a railway network. The main contribution of this paper is the modelling of more complex train paths whereby each section can be visited many times in the course of a train’s journey. Three variant models are formulated and then demonstrated in a case study. This article’s numerical investigations have successively shown the applicability of the proposed models and how they may be used to gain insights into system performance.
Resumo:
This thesis is concerned with the detection and prediction of rain in environmental recordings using different machine learning algorithms. The results obtained in this research will help ecologists to efficiently analyse environmental data and monitor biodiversity.
Resumo:
A mathematical model is developed for the ripening of cheese. Such models may assist predicting final cheese quality using measured initial composition. The main constituent chemical reactions are described with ordinary differential equations. Numerical solutions to the model equations are found using Matlab. Unknown parameter values have been fitted using experimental data available in the literature. The results from the numerical fitting are in good agreement with the data. Statistical analysis is performed on near infrared data provided to the MISG. However, due to the inhomogeneity and limited nature of the data, not many conclusions can be drawn from the analysis. A simple model of the potential changes in acidity of cheese is also considered. The results from this model are consistent with cheese manufacturing knowledge, in that the pH of cheddar cheese does not significantly change during ripening.
Resumo:
Peggy Shaw’s RUFF, (USA 2013) and Queensland Theatre Company’s collaboration with Queensland University of Technology, Total Dik!, (Australia 2013) overtly and evocatively draw on an aestheticized use of the cinematic techniques and technologies of Chroma Key to reveal the tensions in their production and add layers to their performances. In doing so they offer invaluable insight where the filmic and theatrical approaches overlap. This paper draws on Eckersall, Grehan and Scheer’s New Media Dramaturgy (2014) to reposition the frame as a contribution to intermedial theatre and performance practices in light of increasing convergence between seemingly disparate discourses. In RUFF, the scenic environment replicates a chroma-key ‘studio’ which facilitates the reconstruction of memory displaced after a stroke. RUFF uses the screen and projections to recall crooners, lounge singers, movie stars, rock and roll bands, and an eclectic line of eccentric family members living inside Shaw. While the show pays tribute to those who have kept her company across decades of theatrical performance, use of non-composited chroma-key technique as a theatrical device and the work’s taciturn revelation of the production process during performance, play a central role in its exploration of the juxtaposition between its reconstructed form and content. In contrast Total Dik! uses real-time green screen compositing during performance as a scenic device. Actors manipulate scale models, refocus cameras and generate scenes within scenes in the construction of the work’s examination of an isolated Dictator. The ‘studio’ is again replicated as a site for (re)construction, only in this case Total Dik! actively seeks to reveal the process of production as the performance plays out. Building on RUFF, and other works such as By the Way, Meet Vera Stark, (2012) and Hotel Modern’s God’s Beard (2012), this work blends a convergence of mobile technologies, models, and green screen capture to explore aspects of transmedia storytelling in a theatrical environment (Jenkins, 2009, 2013). When a green screen is placed on stage, it reads at once as metaphor and challenge to the language of theatre. It becomes, or rather acts, as a ‘sign’ that alludes to the nature of the reconstructed, recomposited, manipulated and controlled. In RUFF and in Total Dik!, it is also a place where as a mode of production and subsequent reveal, it adds weight to performance. These works are informed by Auslander (1999) and Giesenkam (2007) and speak to and echo Lehmann’s Postdramatic Theatre (2006). This paper’s consideration of the integration of studio technique and live performance as a dynamic approach to multi-layered theatrical production develops our understanding of their combinatory use in a live performance environment.