974 resultados para Materials degradation
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
Ethylα-bromovinylacetate (VII) was condensed with the sodio derivative of ethyl piperonoylacetate (VIII) to give diethylα-vinyl-α′-piperonoylsuccinate (IX). The latter on reduction with lithium aluminium hydride furnished the triol (X), which underwent smooth cyclisation with 1% ethanolic hydrogen chloride to 2-(3′, -methylenedioxyphenyl)-hydroxymethyl-4-vinyltetrahydrofuran (XIa). The structure of XIa was established by Oppenauer oxidation to an aldehyde. Ozonolysis of XIa afforded samin (I).
Resumo:
A theoretical solution has been obtained for the state of stress in a rectangular plate under a pair of symmetrically placed rigid indenters. The stress distributions along the two central axes have been calculated for a square plate assuming the pressure distribution under the indenters as uniform, parabolic and one resulting from 'constant displacement' on a semiinfinite boundary, for different ratios of indenter-width to side of square. The results are compared with those of photoelastic analysis of Berenbaum and Brodie and the validity of the solution is discussed. The solution has been extended to orthotropic materials and numerical results for one type of coal are given.
Resumo:
The thermal degradation behavior of banana fiber and polypropylene/banana fiber composites has been studied by thermogravimetric analysis. Banana fiber was found to be decomposing in two stages, first one around 320 degrees C and the second one around 450 degrees C. For chemically treated banana fiber, the decomposition process has been at a higher temperature, indicating thermal stability for the treated fiber. Activation energies for thermal degradation were estimated using Coats and Redfern method. Calorific value of the banana fiber was measured using a constant volume isothermal bomb calorimeter. rystallization studies exhibited an increase in the crystallization temperature and crystallinity of polypropylene upon the addition of banana fiber. POLYM. COMPOS., 31:1113-1123, 2010. (C) 2009 Society of Plastics Engineers.
Resumo:
A synthesis of 1,3-dimethyl-1,3-dicarboxycyclohexane-2-acetic acid has been described, and proved to be an isomer of the C12-acid-an oxidative degradation product of abietic acid.
Resumo:
The ultrasonic degradation of poly (styrene-co-methyl methacrylate) (SMMA), poly (styrene-co-ethyl methacrylate) (SEMA) and poly (styrene-co-butyl methacrylate) (SBMA) copolymers of different compositions was studied. The copolymers were synthesized and NMR spectroscopy was used to determine the composition, and the glass transition temperatures were determined by DSC. The reactivity ratios were determined by the Kelen-Tudos method and it indicated that the copolymers were random. The effect of solvent, temperature and copolymer composition on the ultrasonic degradation rate of these copolymers was investigated. A model based on continuous distribution kinetics was employed to study the degradation kinetics. The degradation rate coefficients of the copolymers decreased with an increase in the styrene content in the copolymer. At any particular copolymer composition the rate of degradation follows the order: SBMA >SEMA > SMMA. Thermogravimetric analysis (TGA) of the copolymers was carried in order to assess their thermal stability. The same order of degradation was observed for the thermal degradation of the copolymers as that observed for ultrasonic degradation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A model of the information and material activities that comprise the overall construction process is presented, using the SADT activity modelling methodology. The basic model is further refined into a number of generic information handling activities such as creation of new information, information search and retrieval, information distribution and person-to-person communication. The viewpoint could be described as information logistics. This model is then combined with a more traditional building process model, consisting of phases such as design and construction. The resulting two-dimensional matrix can be used for positioning different types of generic IT-tools or construction specific applications. The model can thus provide a starting point for a discussion of the application of information and communication technology in construction and for measurements of the impacts of IT on the overall process and its related costs.
Resumo:
The high-temperature polymorphs of two photocatalytic materials, BiNbO4 and BiTaO4 were synthesized by the ceramic method. The crystal structures of these materials were determined by single-crystal X-ray diffraction. BiNbO4 and BiTaO4 crystallize into the triclinic system P (1) over bar (No. 2), with a = 5.5376(4) angstrom, b = 7.6184(3) angstrom, c = 7.9324(36) angstrom, alpha = 102.565(3)degrees, beta = 90.143(2)degrees, gamma = 92.788 (4)degrees, V = 326.21 (5) angstrom(3). Z = 4 and a = 5.931(1) angstrom, b = 7.672(2) angstrom, c = 7.786(2) angstrom, alpha = 102.94 (3)degrees, beta = 90.04(3)degrees gamma = 93.53(3)degrees, V = 344.59(1) angstrom(3) and Z = 4, respectively. The structures along the c-axis, consist of layers of [Bi2O2] units separated by puckered sheets of (Nb/Ta)O-6 octahedra. Photocatalytic studies on the degradation of dyes indicate selectivity of BiNbO4 towards aromatics containing quinonic and azo functional groups
Resumo:
Base metal (Cr, Mn, Fe, Ni, Cu) substituted CeVO4 compounds were synthesized by the solution combustion technique. These compounds were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. The characterization indicated that the base metals were substituted in the ionic state in all the compounds. These compounds were used for the photocatalytic degradation of phenol and the degradation rates obtained in the presence of these compounds werecompared against that obtained with the commercial Degussa P-25 TiO2 catalyst. Fe and Cr substituted CeVO4 showed photocatalytic activity that was comparable with that of Degussa P-25 TiO2. The concentration of toxic intermediates was high when the reaction was carried out in presence of Degussa P-25 TiO2 but it was found to be insignificant when the reaction was carried out in presence of base metal-substituted CeVO4. The effect of % Fe-substitution (varied from 1 to 5 at%) in CeVO4 on the photocatalytic activity was also investigated and it was observed that 1 at% Fe-substituted compound showed the highest activity. A mathematical model describing the kinetics of the photocatalytic degradation of phenol was developed on the basis of the catalyst structure and taking into account the formation of all the possible intermediates. The variation of the concentration of phenol and the intermediates was described by the model and the reaction rateconstants were determined. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Polymeric peroxides have received renewed attention in the recent past, in view of some significant explorations of their physical and chemical properties. The potential of polymeric peroxides as a class, as specialized fuel, and the need to synthesize such new materials have been reported in the literature. So far, this class of polymers is constituted only by a dozen or so polyperoxides. From the point of view of their use in propellant applications, the importance lies in making materials which are easy to handle etc., unlike the earlier reported poly(styrene peroxide) (PSP), a sticky semi-solid mass. However, judging from the better combustion characteristics, exploring aromatic monomers was thought worthwhile. In this preliminary communication, the synthesis of a new polymeric peroxide made from 1,4-divinylbenzene is reported. The polymer obtained was in powder form and had an exothermic heat of degradation approximately equal to that of PSP. 4 ref.--AA
Resumo:
The phase equilibrium studies of organic system, involving resorcinol (R) and p-dimethylaminobenzaldehyde (DMAB), reveal the formation of a 1:1 molecular complex with two eutectics. The heat of mixing, entropy of fusion, roughness parameter, interfacial energy, and the excess thermodynamic functions were calculated based on enthalpy of fusion data determined via differential scanning calorimetric (DSC) method. X-ray powder diffraction studies confirm that the eutectics are not simple mechanical mixture of the components under investigation. The spectroscopic investigations (IR and NMR) suggest the occurrence of hydrogen bonding between the components forming the molecular complex. The dielectric measurements, carried out on hot-pressed addition compound (molecular complex), show higher dielectric constant at 320 K than that of individual components. The microstructural investigations of eutectic and addition compound indicate dendritic and faceted morphological features. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The photocatalytic degradation of nitrobenzene and substituted nitrobenzenes under UV exposure was investigated with combustion synthesized nano-TiO2 and commercial TiO2 catalyst, Degussa P-25. The experimental data indicated that the photodegradation kinetics was first order. The photocatalytic degradation rates were considerably higher when catalyzed with combustion synthesized TiO2 compared to that of Degussa P-25. The degradation rate coefficients followed the order: 1-chloro,14-dinitrobenzene similar or equal to 4-nitrophenot > 2-nitrophenol > 1-chloro.4-nitrobenzene > 3-niti-ophenol > 2,4-dinitrophenol > 1-chloro,2-nitrobenzene > nitrobenzene > 1,3-dinitrobenzene. Plausible mechanisms and reasons for the observation of the above order are discussed.