994 resultados para Maintenance Engineering
Resumo:
We describe herein some immunological properties of human fetal bone cells recently tested for bone tissue-engineering applications. Adult mesenchymal stem cells (MSCs) and osteoblasts were included in the study for comparison. Surface markers involved in bone metabolism and immune recognition were analyzed using flow cytometry before and after differentiation or treatment with cytokines. Immunomodulatory properties were studied on activated peripheral blood mononuclear cells (PBMCs). The immuno-profile of fetal bone cells was further investigated at the gene expression level. Fetal bone cells and adult MSCs were positive for Stro-1, alkaline phosphatase, CD10, CD44, CD54, and beta2-microglobulin, but human leukocyte antigen (HLA)-I and CD80 were less present than on adult osteoblasts. All cells were negative for HLA-II. Treatment with recombinant human interferon gamma increased the presence of HLA-I in adult cells much more than in fetal cells. In the presence of activated PBMCs, fetal cells had antiproliferative effects, although with patterns not always comparable with those of adult MSCs and osteoblasts. Because of the immunological profile, and with their more-differentiated phenotype than of stem cells, fetal bone cells present an interesting potential for allogeneic cell source in tissue-engineering applications.
Resumo:
In 1980, a Vanguard High Pressure Water Blaster capable of providing 10 gallons of water per minute at 2000 psi was purchased to evaluate water blasting as a crack cleaning method prior to crack filling on asphalt concrete pavements. Afer some iniital trials demonstrated its effectiveness of removing dirt, debris and vegetation, it was included in joint and crack maintenance research on Iowa 7 in Webster County. The objective of the research was to evaluate six crack preparation methods and seven "sealant" materials. The cleaning and sealing was performed in the spring of 1983. Visual evaluations of the performance were made in the fall of 1983 and spring of 1985. Compressed air and/or high pressure water did not adequately prepare cracks less than 3/8 inch wide. Routing or sawing was necessary to provide a sealant reservoir. The water blaster was more effective than compressed air in removing dirt, debris and vegetation but this did not yield significant improvement in sealant adhesion or longevity. Periodic crack filling is necessary on ACC surfaces throughout the remaining life of the pavement.
Resumo:
An asphalt concrete (ACC) overlay is most often the rehabilitative effort used to maintain the serviceability of either an ACC or PCC pavement. The major problem in durability of this ACC overlay comes from reflective cracking. These cracks usually open, allowing water to enter the unsealed crack and strip the ACC in the overlay. The stripping of the ACC allows accelerated deterioration at the crack. Two engineering fabrics were evaluated in this project in order to determine their effectiveness in reducing reflective cracking. These two materials are: PavePrep, Contech Construction Products, Inc., and Pro-Guard, Phillips Fiber Corporation. A 4.2 km (2.6 mi) roadway in Audubon County was selected for the research project. The roadway was divided into eight test sections. Four of the test sections are conventional resurfacing. The other four sections are split between the two engineering fabrics (two Pro-Guard and two PavePrep). A 75 mm (3 in.) thick overlay was placed over the entire project.
Resumo:
Most states, including Iowa, have a significant number of substandard bridges. This number will increase significantly unless some type of preventative maintenance is employed. Both the Iowa Department of Transportation and Iowa counties have successfully employed numerous maintenance, repair and rehabilitation (MR&R) strategies for correcting various types of deficiencies. However, successfully employed MR&R procedures are often not systematically documented or defined for those involved in bridge maintenance. This study addressed the need for a standard bridge MR&R manual for Iowa with emphasis for secondary road applications. As part of the study, bridge MR&R activities that are relevant to the state of Iowa have been systematically categorized into a manual, in a standardized format. Where pertinent, design guidelines have been presented. Material presented in this manual is divided into two major categories: 1) Repair and Rehabilitation of Bridge Superstructure Components, and 2) Repair and Rehabilitation of Bridge Substructure Components. There are multiple subcategories within both major categories that provide detailed information. Some of the detailed information includes step-by-step procedures for accomplishing MR&R activities, material specifications and detailed drawings where available. The source of information contained in the manual is public domain technical literature and information provided by Iowa County Engineers. A questionnaire was sent to all 99 counties in Iowa to solicit information and the research team personally solicited input from many Iowa counties as a follow-up to the questionnaire.
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report summarizes the results of a comprehensive program of field distress surveys, field testing, and laboratory testing for these CIR asphalt roads. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to lengthen the time between rehabilitation cycles and improve the performance and cost-effectiveness of future recycled roads.
Resumo:
The large volume of traffic on the interstate system makes it difficult to make pavement repairs. The maintenance crew needs 4-5 hours to break out the concrete to be replaced and prepare the hole for placing new concrete. Because of this it is usually noon before the patch can be placed. Since it is desirable to remove the barricades before dark there are only 7-8 hours for the concrete to reach the required strength. There exists a need for a concrete that can reach the necessary strength (modulus of rupture = 500 psi) in 7-8 hours. The purpose of this study is to determine if type III cement and/or an accelerator can be used in an M-4 mix to yield a fast setting patch with very little shrinkage. It is recognized that calcium chloride is a corrosive material and may therefore have detrimental effects upon the reinforcing steel. The study of these effects, however, is beyond the scope of this investigation.
Resumo:
Heavy traffic volumes frequently cause distress in asphalt pavements which were designed under accepted design methods and criteria. The distress appears in the form of rutting in the wheel tracks and rippling or shoving in areas where traffic accelerates or decelerates. Apparently accepted stability test methods alone do not always assure the desired service performance of asphaltic pavements under heavy traffic. The Bituminous Research Laboratory, Engineering Research Institute of Iowa State University undertook the development of a laboratory device by which the resistance of an asphalt paving mix to displacement under traffic might be evaluated, and also be used as a supplemental test to determine adequacy of design of the mix by stability procedures.
Resumo:
A study was undertaken by the Bituminous Research Laboratory of the Engineering Research Institute at Iowa State University, under the sponsorship of the Iowa Highway Research Board, project HR 100, to ascertain the effects of a number of characteristics and properties of asphaltic concrete mixes upon the service behavior of the mixes as evaluated by the Traffic Simulator and by field observations. The study included: Investigations of the relations, of gradation, fraction and resistance to wear of aggregates; of stability, cohesion, per cent voids and asphalt content: of a number of laboratory and field mixes to service behavior as indicated by the Traffic Simulator under various test conditions. Based upon the results of the tests and the relationships noted, tentative criteria for the Traffic Simulator test were devised, subject to verification by observations and measurements of field service behavior of the mixes.
Resumo:
This project involved the evaluation of several aggregates previously rated poor to excellent with respect to skid resistance and certain mix design parameters. An open graded asphalt friction course was evaluated using 4 comparably graded aggregates: quartzite, fine grained limestone, coarse limestone and lightweight expanded shale. The performance investigations involved the verification of observations of the quartzite test sections, evaluation of the effect of blending the superior quartzite with a typical coarse grained-textured limestone, and the evaluation of the limestone. The effects of traffic on the aggregates used in the test sections were studied, as well as the relationship between asphalt content levels and traffic with respect to performance. The bond of the open graded friction course mixture was also evaluated. The SN performance of all test sections after sixteen months of exposure was found to be satisfactory in that none of the material combinations had polished to the point where unacceptable SN levels developed. When material combinations were compared, significant differences were noted.
Resumo:
An optimum allocation model has been utilized to examine the existing allocation of highway segments to maintenance garages in the Hamlin study area. The model has also been used to evaluate the financial effect of closing the garage at Hamlin. The examination of the study area shows that only three of 48 highway segments should be reallocated at an annual operational savings of approximately $1,400. The study concludes there would be an annual operational savings of approximately 128,700 if the garage at Hamlin were closed.
Resumo:
During the 1980-81 fiscal year, the Office of Transportation Research conducted a study to examine the existing locations of highway maintenance garages in a study area provided by the Office of Maintenance. The study successfully identified a model referred to as an "Optimum Allocation Model" for examining highway maintenance garage locations in a given area. This model can optimally assign highway segments to maintenance garages and can also be used to evaluate the financial impact of closing or relocating a highway maintenance garage utilizing the highway maintenance-related data currently available at the Iowa DOT. The present study employs the optimum allocation model to examine the existing highway maintenance garage locations in two selected areas in the southeastern and southwestern parts of the state. These areas were selected by the Office of Maintenance and are referred to as "Study Area No. 1" and "Study Area No. 2" in this study. These study areas are shown in Appendices 1 and 2, respectively.
Examination of Existing Highway Maintenance Garage Locations in Tama and Blairstown Study Area, 1983
Resumo:
An optimum allocation model has been utilized to examine the existing allocation of highway segments to maintenance garages in the Tama and Blairstown study area. The model has also been used to evaluate the financial impact of closing the highway maintenance garages at Tama and Blairstown and building a new garage at the junction of U.S. 30 and Iowa 21. The examination of the study area shows that only 13 of 91 highway segments were reallocated under optimum procedures at an annual operational savings of approximately $13,200. The study concludes there would be an annual operational savings of approximately $48,200 if the garages at Tama and Blairstown were closed and a new garage was built at the junction of U.S. 30 and Iowa 21.
Resumo:
A linear programming model is used to optimally assign highway segments to highway maintenance garages using existing facilities. The model is also used to determine possible operational savings or losses associated with four alternatives for expanding, closing and/or relocating some of the garages in a study area. The study area contains 16 highway maintenance garages and 139 highway segments. The study recommends alternative No. 3 (close Tama and Blairstown garages and relocate new garage at Jct. U.S. 30 and Iowa 21) at an annual operational savings of approximately $16,250. These operational savings, however, are only the guidelines for decisionmakers and are subject to the required assumptions of the model used and limitations of the study.
Resumo:
In June 2001, the Iowa Department of Transportation announced the imminent closure and disposal of selected highway maintenance facilities as part of cost-cutting measures mandated by the Iowa legislature, an action that was to be completed by July 31, 2001. The DOT recognized that some of these facilities might be "historical sites," which in the Iowa Code are defined as any district, site, building or structure listed on the National Register of Historic Places or identified as eligible for listing in the National Register by the State Historic Preservation Office. Section 303 of the Code requires state agencies to "enter into an agreement with the Department of Cultural Affairs [in which the SHPO is located] to ensure the proper management, maintenance and development of historical sites." The DOT saw this disposal action as an opportunity to compile information about its highway maintenance facilities that could be employed in development of a management program for historic highway maintenance facilities in the future. Subsequently, the DOT authorized a similar study of highway weigh stations.