859 resultados para MUSCLE METABOLISM
Resumo:
Although musculoskeletal models are commonly used, validating the muscle actions predicted by such models is often difficult. In situ isometric measurements are a possible solution. The base of the skeleton is immobilized and the endpoint of the limb is rigidly attached to a 6-axis force transducer. Individual muscles are stimulated and the resulting forces and moments recorded. Such analyses generally assume idealized conditions. In this study we have developed an analysis taking into account the compliances due to imperfect fixation of the skeleton, imperfect attachment of the force transducer, and extra degrees of freedom (dof) in the joints that sometimes become necessary in fixed end contractions. We use simulations of the rat hindlimb to illustrate the consequences of such compliances. We show that when the limb is overconstrained, i.e., when there are fewer dof within the limb than are restrained by the skeletal fixation, the compliances of the skeletal fixation and of the transducer attachment can significantly affect measured forces and moments. When the limb dofs and restrained dofs are matched, however, the measured forces and moments are independent of these compliances. We also show that this framework can be used to model limb dofs, so that rather than simply omitting dofs in which a limb does not move (e.g., abduction at the knee), the limited motion of the limb in these dofs can be more realistically modeled as a very low compliance. Finally, we discuss the practical implications of these results to experimental measurements of muscle actions.
Resumo:
Recent studies have demonstrated a role for the elastic protein titin in active muscle, but the mechanisms by which titin plays this role remain to be elucidated. In active muscle, Ca(2+)-binding has been shown to increase titin stiffness, but the observed increase is too small to explain the increased stiffness of parallel elastic elements upon muscle activation. We propose a 'winding filament' mechanism for titin's role in active muscle. First, we hypothesize that Ca(2+)-dependent binding of titin's N2A region to thin filaments increases titin stiffness by preventing low-force straightening of proximal immunoglobulin domains that occurs during passive stretch. This mechanism explains the difference in length dependence of force between skeletal myofibrils and cardiac myocytes. Second, we hypothesize that cross-bridges serve not only as motors that pull thin filaments towards the M-line, but also as rotors that wind titin on the thin filaments, storing elastic potential energy in PEVK during force development and active stretch. Energy stored during force development can be recovered during active shortening. The winding filament hypothesis accounts for force enhancement during stretch and force depression during shortening, and provides testable predictions that will encourage new directions for research on mechanisms of muscle contraction.
Cooperation of Mtmr8 with PI3K Regulates Actin Filament Modeling and Muscle Development in Zebrafish
Resumo:
Background: It has been shown that mutations in at least four myotubularin family genes (MTM1, MTMR1, 2 and 13) are causative for human neuromuscular disorders. However, the pathway and regulative mechanism remain unknown. Methodology/Principal Findings: Here, we reported a new role for Mtmr8 in neuromuscular development of zebrafish. Firstly, we cloned and characterized zebrafish Mtmr8, and revealed the expression pattern predominantly in the eye field and somites during early somitogenesis. Using morpholino knockdown, then, we observed that loss-of-function of Mtmr8 led to defects in somitogenesis. Subsequently, the possible underlying mechanism and signal pathway were examined. We first checked the Akt phosphorylation, and observed an increase of Akt phosphorylation in the morphant embryos. Furthermore, we studied the PH/G domain function within Mtmr8. Although the PH/G domain deletion by itself did not result in embryonic defect, addition of PI3K inhibitor LY294002 did give a defective phenotype in the PH/G deletion morphants, indicating that the PH/G domain was essential for Mtmr8's function. Moreover, we investigated the cooperation of Mtmr8 with PI3K in actin filament modeling and muscle development, and found that both Mtmr8-MO1 and Mtmr8-MO2+LY294002 led to the disorganization of the actin cytoskeleton. In addition, we revealed a possible participation of Mtmr8 in the Hedgehog pathway, and cell transplantation experiments showed that Mtmr8 worked in a non-cell autonomous manner in actin modeling. Conclusion/Significance: The above data indicate that a conserved functional cooperation of Mtmr8 with PI3K regulates actin filament modeling and muscle development in zebrafish, and reveal a possible participation of Mtmr8 in the Hedgehog pathway. Therefore, this work provides a new clue to study the physiological function of MTM family members.
Resumo:
The present study aimed to evaluate the effect of dietary linolenic acid (LNA)linoleic acid (LA) ratio on growth performance, hepatic fatty acid profile and intermediary metabolism of juvenile yellow catfish Pelteobagrus fulvidraco. Six isonitrogenous and isolipidic diets were formulated to contain incremental levels of LNA from 0 to 5% at the expense of corn oil (rich in LA), resulting in six dietary treatments with LNA to LA ratios ranging from 0.35 to 14.64. The experiment continued for 7 weeks. Best growth and feed intake were obtained in the fish fed the diets containing the LNA/LA ratios of 1.17 and 2.12 (P<0.05). In contrast, feed conversion ratio was the lowest for fish fed the diets containing the LNA/LA ratios of 1.17 and 2.12 (P<0.05). Dietary LNA to LA ratios significantly influenced viscerosomatic index and hepatosomatic index (P<0.05), but not condition factor (P>0.05). Body composition was also significantly influenced by dietary LNA to LA ratios (P<0.05). Generally, liver FA compositions reflected dietary FA profiles. Declining LA and increasing LNA contents in liver were observed with the increasing dietary LNA/LA ratios (P<0.05). Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) increased with the increasing LNA to LA ratios, suggesting that yellow catfish could elongate and desaturate C18 polyunsaturated fatty acids into highly unsaturated fatty acids. As a consequence, the n-6 fatty acids (FA) declined, and total n-3 FA and n-3/n-6 ratios increased with the dietary ratios of LNA/LA (P<0.05). Dietary LNA to LA ratios significantly influenced several enzymatic activities involved in liver intermediary metabolism (P<0.05), such as lipoprotein lipase, hepatic lipase, pyruvate kinase, succinate dehydrogenase, malic dehydrogenase and lactate dehydrogenase, suggesting that dietary LNA/LA ratios had significant effects on nutrient metabolism in the liver. To our knowledge this is the first demonstration of the effects of dietary LNA to LA ratios on the enzymatic activities of liver in fish, which provides information on diet quality and utilization, and can also be used as an indicator of the nutritional status of this fish. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The physiological differences for three bloom-forming cyanobacteria (Cylindrospermopsis raciborskii, Microcystis aeruginosa, and Aphanizomenon flos-aquae) were investigated. In comparison with M. aeruginosa and A. flos-aquae, C. raciborskii exhibited a significantly higher concentration of carotenoids, higher values in maximum photosynthesis rate (P-m), apparent photosynthetic efficieny (a), and maximum electron transport rate (ETRmax) during the growth period. In addition, higher extracellular alkaline phosphatase activities and lower light compensation point (I-c) were also detected in C raciborskii (p < 0.05, ANOVA). Therefore, it is suggested that the higher photosynthetic activities, more effective uptake and utilization to phosphate, and low light requirements might play important roles in the occurrence and invasive behavior of C. raciborskii. Crown Copyright (C) 2009 Published by Elsevier B.V. All rights reserved.
Resumo:
Submersed macrophytes in eutrophic lakes often experience high NH4+ concentration and low light availability in the water column. This study found that an NH4+-N concentration of 1 mgL(-1) in the water column apparently caused physiological stress on the macrophyte Potamogeton crispus; L The plants accumulated free amino acids (FAA) and lost soluble carbohydrates (SC) under NH4+ stress. These stressful effects of NH4+ were exacerbated under low light availability. Shading significantly increased NH4+ and FAA contents and dramatically decreased SC and starch contents in the plant shoots. At an NH4+-N concentration of 1 mg L-1 in the water column, neither growth inhibition nor NH4+ accumulation was observed in the plant tissues of P. crispus under normal light availability. The results showed that 1 mg L-1 NH4+-N in the water column was not toxic to P. crispus in a short term. To avoid NH4+ toxicity. active NH4+ transportation out of the cell may cost energy and thus result in a decline of carbohydrate. When NH4+ inescapably accumulates in the plant cell, i.e. under NH4+ Stress and shading, NH4+ is scavenged by FAA synthesis. (c) 2009 Published by Elsevier B.V.
Resumo:
The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd2+-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution. (C) 2008 Published by Elsevier Inc.
Resumo:
Transgenic animals with improved qualities have the potential to upset the ecological balance of a natural environment. We investigated metabolic rates of 'all-fish' growth hormone (GH) transgenic common carp under routine conditions and during starvation periods to determine whether energy stores in transgenic fish would deplete faster than controls during natural periods of starvation. Before the oxygen uptake was measured, the mean daily feed intake of transgenic carp was 2.12 times greater than control fish during 4 days of feeding. The average oxygen uptake of GH transgenic fish was 1.32 times greater than control fish within 96 h of starvation, but was not significantly different from controls between 96 and 144 h of starvation. At the same time, GH transgenic fish did not deplete energy reserves at a faster rate than did the controls, as the carcass energy contents of the two groups following a 60-d starvation period were not significantly different. Consequently, we suggest that increased routine oxygen uptake in GH transgenic common carp over that of control fish may be mainly due to the effects of feeding, and not to an increase in basal metabolism. GH transgenic fish are similar to controls in the regulation of metabolism to normally distribute energy reserves during starvation. (c) 2008 Published by Elsevier B.V.
Resumo:
The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.
Resumo:
This study was undertaken to investigate the role of the glutathione-involved detoxifying mechanism in defending the tobacco BY-2 suspension cells against microcystin-RR (MC-RR). Analysis showed that exposure of the cells to different concentrations of MC-RR (0.1, 1 and 10 mu g/mL) for 0-6 days resulted in a time and concentration-dependent decrease in cell viability and increase in reactive oxygen species (ROS) content. Reduced glutathione (GSH) and total glutathione (tGSH) content as well as glutathione reductase (GR), glutathione peroxidase (GPX) and glutathione-S-transferase (GST) activities significantly increased after 3-4 days exposure in the highest two concentration treated groups, while decreased until reaching the control values except for GPX at day 6. Oxidized glutathione (GSSG) content markedly increased compared with control in high concentration MC-RR treated group after 6 days exposure. The GSH/GSSG ratio was much higher than control in 10 mu g/mL MC-RR treated group at day 4, but after 6 days exposure, the ratios in all treated groups were lower than that of the control group.
Resumo:
Growth, nitrogen and carbohydrate metabolism in relation to eutrophication were studied for a submerged plant Potamogeton maackianus, a species common in East Asian shallow lakes. The plants were grown in six NH4+-N concentrations (0.05, 0.50, 1.00, 3.50, 5.00 and 10.00 mg/L) for six days. NH4+-N levels in excess of 0.50 mg/L inhibited the plant growth. The relationships between external NH4+-N availability and total nitrogen (TN), protein-N, free amino acid-N (FAA-N) and NH4+-N in plant tissues, respectively, conformed to a logarithmic model suggesting that a feedback inhibition mechanism may exist for ammonium uptake. The response of starch to NH4+-N was fitted with a negative, logarithmic curve. Detailed analysis revealed that the influx NH4+-N had been efficiently incorporated into organic-N and eventually stored as protein at the expense of starch accumulation. These data suggest that this species may be able to tolerate high levels of ammonium when dissolved oxygen is sufficient.
Resumo:
The present study was carried out to investigate contamination of heavy metals in 19 fish species from the Banan section of Chongqing in the Three Gorges, Yangtze River. The results showed that the mean concentrations of heavy metals were higher in intestine than muscle, except zinc in upper strata. In the fish inhabiting the upper strata, there were significant differences between mean concentrations of As, Cr, Cu and Hg in muscle and intestine (P <0.05). There were also significant differences between mean concentrations of Cr and Cu in muscle and intestine in the fish inhabiting middle strata. However, significant differences between mean concentrations of As, Cd, Hg, Pb and Zn were measured in fish inhabiting bottom strata in both intestine and muscle tissues (P <0.05). For the fish inhabiting different strata, the concentrations of As, Cd, Cr, Cu, Hg and Ph in muscle and intestine of the fish from bottom strata (BS) were higher than those in both upper strata (US) and middle strata (MS); whereas a higher concentration of Zn was measured in muscle and intestine from fish inhabiting upper strata. Mean metal concentrations were found to be higher in age 11 than those in age I in Coreius heterodon (2- and 1-year odl fish respectively). The overall results indicated that fish muscle in the Banan section were slightly contaminated by heavy metals, but did not exceed Chinese food standards.
Resumo:
Power-time curves and metabolic properties of Tetrahymena thermophila BF5 exposed to different Yb3+ stop levels were studied by ampoule method of isothermal calorimetry at 28 degrees C. Metabolic rate (r) decreased significantly while peak time (PT) increased with the increase of Yb3+ stop. These results were mainly due to the inhibition of cell growth, which corresponded to the decrease of cell number obtained by cell counting. Compared with cell counting, calorimetry was sensible, easy to use and convenient for monitoring the toxic effects of Yb3+ stop on cells and freshwater ecosystem. It was also found that cell membrane fluidity decreased significantly under the effects of Yb3+ stop, which indicated that Yb3+ could be membrane active molecules with its effect on cell membranes as fundamental aspect of its toxicity.
Resumo:
Stable carbon and nitrogen isotope analysis was used to investigate the host-parasite trophic relationship between the parasitic isopod Ichthyoxenus japonensis and one of its freshwater fish host Carassius auratus auratus from Lake Fuxian, China. No significant differences in delta C-13 and delta N-15 were observed between the heterosexual pairs of I. japonensis in the same host. delta C-13 and delta N-15 of I. japonensis were significantly lower than those of its host fish, and the isotopic ratios of the isopod increased with the increase of host fish isotopic signatures. Unlike isotopic fractionation patterns generally observed among consumers and their diets, isopod parasite was delta C-13 and N-15 depleted relative to the muscle tissue of this host fish. Differential isotopic fractionation patterns in the isopod parasite and the fish may be attributed to differences in parasite and host metabolism.