994 resultados para MON810 maize


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[Excerpt] Mycotoxins are secondary toxic metabolites of filamentous fungi. Aflatoxins (AFs) are produced to Aspergillus species such as A. flavus and A. parasiticus. These fungi are ubiquitous in nature and usually found on agricultural commodities. Therefore, AFs are encountered in many important foodstuff, including wheat, rice, maize, peanuts, sorghum, pearl millet, spices, oilseeds, tree nuts and milk. Due to the high toxicity of AFs, many methods have been studied to reduce or eliminate these mycotoxins from food and feed. Gamma irradiation is one technology that has been investigated with promising results. The aims of this study were (I) to study the effect of gamma radiation on aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatoxin G2 (II) to evaluate the effect of the presence of water on AFs degradation during the irradiation process; and (IV) to evaluate the cytotoxicity of radiolytic products formed. (...)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Mal de Río Cuarto es una enfermedad virósica causada por el Maize Rorgh Dwarf Virus (MRDV), el cual es transmitido por el insecto vector Delphacodes kuscheli. Esta enfermedad provoca cuantiosas pérdidas económicas sobre todo en maíz, afectando la producción de granos y forraje. El presente proyecto, empleando plantas de maíz cuya infección será provocada y plantas de sorgo y avena con síntomas visibles de la enfermedad, recolectadas a campo, se propone a lo largo de tres años: realizar un estudio anatómico, comparativo entre variedades susceptibles y ligeramente resistentes de maíz para determinar en qué etapa fenológica de la planta se observan las primeras anomalías; localizar partículas virales y estudiar los cambios celulares en orgánulos y pared celular por microscopía electrónica de transmisión y analizar la relación de auxina (IAA) endógena/IAA-oxidasa en enaciones de diferentes estadíos de su desarrollo, a fin de establecer correlaciones hormonales y enzimáticas con la proliferación de tejidos vasculares observada en estas agallas foliares. El conocimiento de las interrelaciones huésped-patógeno, en este caso particular gramínea-virus, brindará la posibilidad de obtener un modelo que en el futuro pueda servir de base a la Biología Molecular a fin de incorporar caracteres de resistencia a enfermedades en cultivos agrícolas de importancia económica en la región donde el proyecto se inserta así como en el país. Objetivo General: Dada la significación económica del Mal de Río Cuarto en la zona maicera de nuestro país, en la cual se cultiva asimismo sorgo y avena, el presente proyecto intenta aportar conocimientos sobre las afecciones producidas por el virus causal de esta enfermedad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El Mal de Río Cuarto es la enfermedad más importante en el cultivo de maíz, ya que produce severos daños y está muy difundida: en la actualidad ocupa una superficie cercana a 1.000.000 de has. Se han evaluado las pérdidas en plantas severamente afectadas en la zona endémica de la virosis determinándose niveles que oscilaron entre un 20 a un 40% según el período agrícola. El virus afecta otros cultivos tales como sorgo, trigo, avena, mijo, moha de Hungría y centeno además de numerosas malezas pertenecientes a las familias de las Poáceas y Cyperáceas. La morfología de la partícula observada en cortes ultra finos permitió modular la hipótesis de similitud o parentesco con la enfermedad llamada Maize Rough Dwarf (MRDV) presente en el Mediterráneo; trabajos posteriores evidenciaron que tanto MRDV como el virus del Mal de Río Cuarto mostraron 10 bandas típicas de los Fijivirus. La enfermedad se transmite en la naturaleza en forma persistente mediante la especie Dephacodes kuschelli Fennah. Dada la importancia económica de la enfermedad se consideró prioritario lograr la cría y transmisión experimental de la virosis con insectos criados en laboratorio, ya que hasta el momento las transmisiones se llevaban a cabo con insectos provenientes de campo. El cumplimiento de este objetivo de trabajo permitirá el desarrollo de otras actividades tales como multiplicación del inóculo y su mantenimiento para la realización de estudios de caracterización biológica y molecular, purificación del virus, determinación de hospedantes diferenciales que permitirán establecer similitud o diferencias entre aislamientos locales y/o extranjeros, determinación de cultivares tolerantes o resistentes entre otras ventajas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La familia Rhabdoviridae incluye varios patógenos económicamente importantes de cultivos, entre los más de 70 virus que afectan plantas. Estos últimos se clasifican en los géneros Cytorhabdovirus y Nucleorhabdovirus, dependiendo de si producen inclusiones en el espacio perinuclear, o si desarrollan viriones citoplasmáticos. Los integrantes de esta familia infectan gran cantidad de monocotiledóneas y dicotiledóneas y la mayoría son dependientes de transmisión por insectos. Las interacciones virus-vector son altamente específicas, y se ha registrado la replicación en insectos, del rhabdovirus que transmiten a las plantas. Cada especie de rhabdovirus induce un amplio espectro de síntomas en sus plantas huéspedes, y estos van desde la falta de efectos discernibles hasta la muerte total de la planta. El maíz (Zea mays L.) es el cultivo más ampliamente distribuido a nivel mundial y uno de los principales cultivos de cereales, ubicándose tercero en el ranking de producción en el mundo. En maíz se ha citado la presencia de varios rhabdovirus, entre estos American wheat striate mosaic virus (AWSMV), Cereal chlorotic mottle virus (CCMV), Maize mosaic virus (MMV), Maize sterile stunt virus (strains of Barley yellow striate virus), Northern cereal mosaic virus (NCMV) y Maize fine streak virus (MFSV). Ninguno de ellos reportado en Argentina. Desde 2001 un rhabdovirus es observado, por sintomatología y microscopía electrónica, en plantas de maíz de diferentes localidades de la provincia de Córdoba. Esta virosis pudo ser transmitida en dos oportunidades a plantas de maíz sanas mediante Peregrinus maidis y logró amplificarse mediante RT-PCR con iniciadores degenerados, el gen de la polimerasa L. Nuestra hipótesis es que el agente causal de la sintomatología de mosaico estriado amarillo en maíz sería un rhabdovirus emergente en Argentina, diferente de Maize mosaic virus (MMV), transmitido por delfácidos, que puede aislarse y mantenerse en condiciones controladas. El objetivo del presente trabajo es generar conocimientos biológicos, moleculares y epidemiológicos sobre el agente causal de la sintomatología en maíz de mosaico estriado amarillo. Para ello se colectarán plantas de maíz con sintomatología de mosaico estriado amarillo, en distintas localidades donde se presente la sintomatología. Las muestras se observarán al microscopio electrónico en cortes ultrafinos y en “leaf dip". Los viriones se purificarán, extraerá el RNA de los mismos, y obtendrá la secuencia de nucleótidos, para compararla con otras publicadas de virosis vegetales y se obtendrán homologías. Se realizarán transmisiones experimentales de esta virosis, por incisiones vasculares y mediante el empleo de diferentes especies de insectos vectores. Importancia del proyecto El avance de patógenos tropicales hacia zonas templadas es una de las causas de la aparición de las virosis emergentes, que se caracterizan por producir epifítias al ingresar a nuevos ecosistemas. El Maize mosaic virus (MMV) es un rhabdovirus que produce una de las virosis más importantes del maíz en el continente americano. Determinar la identidad del agente etiológico del mosaico estriado amarillo y establecer su relación con MMV es fundamental para desarrollar medidas proactivas y diseñar estrategias de manejo de esta nueva enfermedad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) It may seem rather strange that, in spite of the efforts of a considerable number of scientists, the problem of the origin of indian corn or maize still has remained an open question. There are no fossil remains or archaeological relics except those which are quite identical with types still existing. (Fig. 1). The main difficulty in finding the wild ancestor- which may still exist - results from the fact that it has been somewhat difficult to decide what it should be like and also where to look for it. 2) There is no need to discuss the literature since an excellent review has recently been published by MANGELSDORF and REEVES (1939). It may be sufficient to state that there are basically two hypotheses, that of ST. HILAIRE (1829) who considered Brazilian pod corn as the nearest relative of wild corn still existing, and that of ASCHERSON (1875) who considered Euchlaena from Central America as the wild ancestor of corn. Later hypotheses represent or variants of these two hypotheses or of other concepts, howewer generally with neither disproving their predecessors nor showing why the new hypotheses were better than the older ones. Since nearly all possible combinations of ideas have thus been put forward, it har- dly seems possible to find something theoretically new, while it is essential first to produce new facts. 3) The studies about the origin of maize received a new impulse from MANGELSDORF and REEVES'S experimental work on both Zea-Tripsacum and Zea-Euchlaena hybrids. Independently I started experiments in 1937 with the hope that new results might be obtained when using South American material. Having lost priority in some respects I decided to withold publication untill now, when I can put forward more concise ideas about the origin of maize, based on a new experimental reconstruction of the "wild type". 4) The two main aspects of MANGELSDORF and REEVES hypothesis are discussed. We agree with the authors that ST. HILAIRE's theory is probably correct in so far as the tunicata gene is a wild type relic gene, but cannot accept the reconstruction of wild corn as a homozygous pod corn with a hermaphroditic tassel. As shown experimentally (Fig. 2-3) these tassels have their central spike transformed into a terminal, many rowed ear with a flexible rachis, while possessing at the same time the lateral ear. Thus no explanation is given of the origin of the corn ear, which is the main feature of cultivated corn (BRIEGER, 1943). The second part of the hypothesis referring to the origin of Euchlaena from corn, inverting thus ASCHERSON's theory, cannot be accepted for several reasons, stated in some detail. The data at hand justify only the conclusion that both genera, Euchlaena and Zea, are related, and there is as little proof for considering the former as ancestor of the latter as there is for the new inverse theory. 5) The analysis of indigenous corn, which will be published in detail by BRIEGER and CUTLER, showed several very primitive characters, but no type was found which was in all characters sufficiently primitive. A genetical analysis of Paulista Pod Corn showed that it contains the same gene as other tunicates, in the IV chromosome, the segregation being complicated by a new gametophyte factor Ga3. The full results of this analysis shall be published elsewhere. (BRIEGER). Selection experiments with Paulista Pod Corn showed that no approximation to a wild ancestor may be obtained when limiting the studies to pure corn. Thus it seemed necessary to substitute "domesticated" by "wild type" modifiers, and the only means for achieving this substitution are hybridizations with Euchlaena. These hybrids have now been analysed init fourth generation, including backcrosses, and, again, the full data will be published elsewhere, by BRIEGER and ADDISON. In one present publication three forms obtained will be described only, which represent an approximation to wild type corn. 6) Before entering howewer into detail, some arguments against ST. HILAIRE's theory must be mentioned. The premendelian argument, referring to the instability of this character, is explained by the fact that all fertile pod corn plants are heterozygous for the dominant Tu factor. But the sterility of the homozygous TuTu, which phenotypically cannot be identified, is still unexplained. The most important argument against the acceptance of the Tunicata faetor as wild type relic gene was removed recently by CUTLER (not yet published) who showed that this type has been preserved for centuries by the Bolivian indians as a mystical "medicine". 7) The main botanical requirements for transforming the corn ear into a wild type structure are stated, and alternative solutions given. One series of these characters are found in Tripsacum and Euchlaena : 2 rows on opposite sides of the rachis, protection of the grains by scales, fragility of the rachis. There remains the other alternative : 4 rows, possibly forming double rows of female and male spikelets, protection of kernels by their glumes, separation of grains at their base from the cob which is thin and flexible. 8) Three successive stages in the reconstruction of wild corn, obtained experimentally, are discussed and illustrated, all characterized by the presence of the Tu gene. a) The structure of the Fl hybrids has already been described in 1943. The main features of the Tunicata hybrids (Fig. -8), when compared with non-tunicate hybrids (Fig. 5-6), consist in the absence of scaly protections, the fragility of the rachis and finally the differentiation of the double rows into one male and one female spikelet. As has been pointed out, these characters represent new phenotypic effects of the tunicate factor which do not appear in the presence of pure maize modifiers. b) The next step was observed among the first backcross to teosinte (Fig. 9). As shown in the photography, Fig. 9D, the features are essencially those of the Fl plants, except that the rachis is more teosinte like, with longer internodes, irregular four-row-arrangement and a complete fragility on the nodes. c) In the next generation a completely new type appeared (Fig. 10) which resembles neither corn nor teosinte, mainly in consequence of one character: the rachis is thin and flexible and not fragile, while the grains have an abscission layer at the base, The medium sized, pointed, brownish and hard granis are protected by their well developed corneous glumes. This last form may not yet be the nearest approach to a wild grass, and I shall try in further experiments to introduce other changes such as an increase of fertile flowers per spikelet, the reduction of difference between terminal and lateral inflorescences, etc.. But the nature of the atavistic reversion is alveadwy such that it alters considerably our expectation when looking for a still existing wild ancestor of corn. 9) The next step in our deductions must now consist in an reversion of our question. We must now explain how we may obtain domesticated corn, starting from a hypothetical wild plant, similar to type c. Of the several changes which must have been necessary to attract the attention of the Indians, the following two seem to me the most important: the disappearance of all abscission layers and the reduction of the glumes. This may have been brought about by an accumulation of mutations. But it seems much more probable to assume that some crossing with a tripsacoid grass or even with Tripsacum australe may have been responsible. In such a cross, the two types of abscission layer would be counterbalanced as shown by the Flhybrids of corn, Tripsacum and Euchlaena. Furthermore in later generations a.tu-allele of Tripsacum may become homozygous and substitute the wild tunicate factor of corn. The hypothesis of a hybrid origin of cultivated corn is not completely new, but has been discussed already by HARSHBERGER and COLLINS. Our hypothesis differs from that of MANGELSDORF and REEVES who assume that crosses with Tripsacum are responsible only for some features of Central and North American corn. 10) The following arguments give indirects evidence in support of our hypothesis: a) Several characters have been observed in indigenous corn from the central region of South America, which may be interpreted as "tripsacoid". b) Equally "zeoid" characters seem to be present in Tripsacum australe of central South-America. c) A system of unbalanced factors, combined by the in-tergeneric cross, may be responsible for the sterility of the wild type tunicata factor when homozygous, a result of the action of modifiers, brought in from Tripsacum together with the tuallele. d) The hybrid theory may explain satisfactorily the presence of so many lethals and semilethals, responsible for the phenomenon of inbreeding in cultivated corn. It must be emphasized that corn does not possess any efficient mechanism to prevent crossing and which could explain the accumulation of these mutants during the evolutionary process. Teosinte which'has about the same mechanism of sexual reproduction has not accumulated such genes, nor self-sterile plants in spite of their pronounced preference for crossing. 11) The second most important step in domestication must have consisted in transforming a four rowed ear into an ear with many rows. The fusion theory, recently revived byLANGHAM is rejected. What happened evidently, just as in succulent pXants (Cactus) or in cones os Gymnosperms, is that there has been a change in phyllotaxy and a symmetry of longitudinal rows superimposed on the original spiral arrangement. 12) The geographical distribution of indigenous corn in South America has been discussed. So far, we may distinguish three zones. The most primitive corn appears in the central lowlands of what I call the Central Triangle of South America: east of the Andies, south of the Amazone-Basin, Northwest of a line formed by the rivers São Prancisco-Paraná and including the Paraguay-Basin. The uniformity of the types found in this extremely large zone is astonishing (BRIEGER and CUTLER). To the west, there is the well known Andian region, characterized by a large number of extremely diverse types from small pop corn to large Cuszco, from soft starch to modified sweet corn, from large cylindrical ears to small round ears, etc.. The third region extends along the atlantic coast in the east, from the Caribean Sea to the Argentine, and is characterized by Cateto, an orange hard flint corn. The Andean types must have been obtained very early, and undoubtedly are the result of the intense Inca agriculture. The Cateto type may be obtained easily by crosses, for instance, of "São Paulo Pointed Pop" to some orange soft corn of the central region. The relation of these three South American zones to Central and North America are not discussed, and it seems essential first to study the intermediate region of Ecuador, Colombia and Venezuela. The geograprical distribution of chromosome knobs is rapidly discussed; but it seems that no conclusions can be drawn before a large number of Tripsacum species has been analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) The first part deals with the different processes which may complicate Mendelian segregation and which may be classified into three groups, according to BRIEGER (1937b) : a) Instability of genes, b) Abnormal segregation due to distur- bances during the meiotic divisions, c) obscured segregation, after a perfectly normal meiosis, caused by elimination or during the gonophase (gametophyte in higher plants), or during zygophase (sporophyte). Without entering into detail, it is emphasized that all the above mentioned complications in the segregation of some genes may be caused by the action of other genes. Thus in maize, the instability of the Al factor is observed only when the gene dt is presente in the homozygous conditions (RHOADES 1938). In another case, still under observation in Piracicaba, an instability is observed in Mirabilis with regard to two pairs of alleles both controlling flower color. Several cases are known, especially in corn, where recessive genes, when homozigous, affect the course of meiosis, causing asynapsis (asyndesis) (BEADLE AND MC CLINTOCK 1928, BEADLE 1930), sticky chromosomes (BEADLE 1932), supermunmerary divisions (BEADLE 1931). The most extreme case of an obscured segregatiou is represented by the action of the S factors in self stetrile plants. An additional proof of EAST AND MANGELSDORF (1925) genetic formula of self sterility has been contributed by the studies on Jinked factors in Nicotina (BRIEGER AND MANGELSDORF (1926) and Antirrhinum (BRIEGER 1930, 1935), In cases of a incomplete competition and selection between pollen tubes, studies of linked indicator-genes are indispensable in the genetic analysis, since it is impossible to analyse the factors for gametophyte competition by direct aproach. 2) The flower structure of corn is explained, and stated that the particularites of floral biology make maize an excellent object for the study of gametophyte factors. Since only one pollen tube per ovule may accomplish fertilization, the competition is always extremely strong, as compared with other species possessing multi-ovulate ovaries. The lenght of the silk permitts the study of pollen tube competitions over a varying distance. Finally the genetic analysis of grains characters (endosperm and aleoron) simpliflen the experimental work considerably, by allowing the accumulation of large numbers for statistical treatment. 3) The four methods for analyzing the naturing of pollen tube competition are discussed, following BRIEGER (1930). Of these the first three are: a) polinization with a small number of pollen grains, b) polinization at different times and c) cut- ting the style after the faster tubes have passe dand before the slower tubes have reached the point where the stigma will be cut. d) The fourth method, alteration of the distatice over which competition takes place, has been applied largely in corn. The basic conceptions underlying this process, are illustrated in Fig. 3. While BRINK (1925) and MANGELSDORF (1929) applied pollen at different levels on the silks, the remaining authors (JONES, 1922, MANGELSDORF 1929, BRIEGER, at al. 1938) have used a different process. The pollen was applied as usual, after removing the main part of the silks, but the ears were divided transversally into halves or quarters before counting. The experiments showed generally an increase in the intensity of competition when there was increase of the distance over which they had to travel. Only MANGELSDORF found an interesting exception. When the distance became extreme, the initially slower tubes seemed to become finally the faster ones. 4) Methods of genetic and statistical analysis are discussed, following chiefly BRIEGER (1937a and 1937b). A formula is given to determine the intensity of ellimination in three point experiments. 5) The few facts are cited which give some indication about the physiological mechanism of gametophyte competition. They are four in number a) the growth rate depends-only on the action of gametophyte factors; b) there is an interaction between the conductive tissue of the stigma or style and the pollen tubes, mainly in self-sterile plants; c) after self-pollination necrosis starts in the tissue of the stigma, in some orchids after F. MÜLLER (1867); d) in pollon mixtures there is an inhibitory interaction between two types of pollen and the female tissue; Gossypium according to BALLS (1911), KEARNEY 1923, 1928, KEARNEY AND HARRISON (1924). A more complete discussion is found in BRIEGER 1930). 6) A list of the gametophyte factors so far localized in corn is given. CHROMOSOME IV Ga 1 : MANGELSDORF AND JONES (1925), EMERSON 1934). Ga 4 : BRIEGER (1945b). Sp 1 : MANGELSDORF (1931), SINGLETON AND MANGELSDORF (1940), BRIEGER (1945a). CHROMOSOME V Ga 2 : BRIEGER (1937a). CHROMOSOME VI BRIEGER, TIDBURY AND TSENG (1938) found indications of a gametophyte factor altering the segregation of yellow endosperm y1. CHROMOSOME IX Ga 3 : BRIEGER, TIDBURY AND TSENG (1938). While the competition in these six cases is essentially determined by one pair of factors, the degree of elimination may be variable, as shown for Ga2 (BRIEGER, 1937), for Ga4 (BRIEGER 1945a) and for Spl (SINGLETON AND MANGELSDORF 1940, BRIEGER 1945b). The action of a gametophyte factor altering the segregation of waxy (perhaps Ga3) is increased by the presence of the sul factor which thus acts as a modifier (BRINCK AND BURNHAM 1927). A polyfactorial case of gametophyte competition has been found by JONES (1922) and analysed by DEMEREC (1929) in rice pop corn which rejects the pollen tubes of other types of corn. Preference for selfing or for brothers-sister mating and partial elimination of other pollen tubes has been described by BRIEGER (1936). 7) HARLAND'S (1943) very ingenious idea is discussed to use pollen tube factors in applied genetics in order to build up an obstacle to natural crossing as a consequence of the rapid pollen tube growth after selfing. Unfortunately, HARLAND could not obtain the experimental proof of the praticability of his idea, during his experiments on selection for minor modifiers for pollen tube grouth in cotton. In maize it should be possible to employ gametophyte factors to build up lines with preference for crossing, though the method should hardly be of any practical advantage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general properties of POISSON distributions and their relations to the binomial distribuitions are discussed. Two methods of statistical analysis are dealt with in detail: X2-test. In order to carry out the X2-test, the mean frequency and the theoretical frequencies for all classes are calculated. Than the observed and the calculated frequencies are compared, using the well nown formula: f(obs) - f(esp) 2; i(esp). When the expected frequencies are small, one must not forget that the value of X2 may only be calculated, if the expected frequencies are biger than 5. If smaller values should occur, the frequencies of neighboroughing classes must ge pooled. As a second test reintroduced by BRIEGER, consists in comparing the observed and expected error standard of the series. The observed error is calculated by the general formula: δ + Σ f . VK n-1 where n represents the number of cases. The theoretical error of a POISSON series with mean frequency m is always ± Vm. These two values may be compared either by dividing the observed by the theoretical error and using BRIEGER's tables for # or by dividing the respective variances and using SNEDECOR's tables for F. The degree of freedom for the observed error is one less the number of cases studied, and that of the theoretical error is always infinite. In carrying out these tests, one important point must never be overlloked. The values for the first class, even if no concrete cases of the type were observed, must always be zero, an dthe value of the subsequent classes must be 1, 2, 3, etc.. This is easily seen in some of the classical experiments. For instance in BORKEWITZ example of accidents in Prussian armee corps, the classes are: no, one, two, etc., accidents. When counting the frequency of bacteria, these values are: no, one, two, etc., bacteria or cultures of bacteria. Ins studies of plant diseases equally the frequencies are : no, one, two, etc., plants deseased. Howewer more complicated cases may occur. For instance, when analising the degree of polyembriony, frequently the case of "no polyembryony" corresponds to the occurrence of one embryo per each seed. Thus the classes are not: no, one, etc., embryo per seed, but they are: no additional embryo, one additional embryo, etc., per seed with at least one embryo. Another interestin case was found by BRIEGER in genetic studies on the number os rows in maize. Here the minimum number is of course not: no rows, but: no additional beyond eight rows. The next class is not: nine rows, but: 10 rows, since the row number varies always in pairs of rows. Thus the value of successive classes are: no additional pair of rows beyond 8, one additional pair (or 10 rows), two additional pairs (or 12 rows) etc.. The application of the methods is finally shown on the hand of three examples : the number of seeds per fruit in the oranges M Natal" and "Coco" and in "Calamondin". As shown in the text and the tables, the agreement with a POISSON series is very satisfactory in the first two cases. In the third case BRIEGER's error test indicated a significant reduction of variability, and the X2 test showed that there were two many fruits with 4 or 5 seeds and too few with more or with less seeds. Howewer the fact that no fruit was found without seed, may be taken to indicate that in Calamondin fruits are not fully parthenocarpic and may develop only with one seed at the least. Thus a new analysis was carried out, on another class basis. As value for the first class the following value was accepted: no additional seed beyond the indispensable minimum number of one seed, and for the later classes the values were: one, two, etc., additional seeds. Using this new basis for all calculations, a complete agreement of the observed and expected frequencies, of the correspondig POISSON series was obtained, thus proving that our hypothesis of the impossibility of obtaining fruits without any seed was correct for Calamondin while the other two oranges were completely parthenocarpic and fruits without seeds did occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of carotenoid pigments on the egg yolk color was studied in this paper. Three types of maize of known genetical constitution were used: Cateto, with deep orange endosperm; Armour, with yellow-orange endosperm and Cristal, with white endosperm. The carotenoid pigments of the two colored maizes were analysed: the total and both the active parts in relation to vitamin A and the zeaxanthin part showed to be practically double in the deep orange corn. The color of the yolk was orange when the ration had the deep orange corn and yellow in the case of the yellow-orange corn. The increase in shade was proportional to the amount of pigment present in the grains. If green feeds is added to the ration with white corn, the yolk becomes yellow or orange, depending on the amount of green given to the chickens. The practical importance of controlling the color of the yolk was emphasized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of different feeds in comparison with that of maize grains on the egg yolk color was observed. It was found that deep orange and yellow orange maize give satisfactory coloration to the yolk, respectively orange and yellow. The most intense color was observed when green feed was used in combination with deep orange maize. Green feeds as chicory, alfafa, cabbage, welsh onion and banana leaves and alfafa or chicory meal proved to be good in giving orange color to the yolk. Yellow yolk was obtained when Guinea grass or carica fruit were used in the ration. Carrot and beet without leaves did not give satisfactory color to the egg yolk. The observations with other feeds are being continued.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors discuss from the economic point of view the use of a few functions intended to represent the yield y corresponding to a level xof the nutrient. They point out that under conditions of scarce capital what is actually most important is not to obtain the highest profit per hectare but the highest return per cruzeiro spent, so that we should maximize the function z = _R - C_ = _R_ - 1 , C C where R is the gross income and C the cost of production (fixed plus variable, both per hectare). Being C = M + rx, with r the unit price of the nutrient and Af the fixed cost of the crop, wo are led to the equation (M + rx)R' - rR = 0. With R = k + sx + tx², this gives a solution Xo = - Mt - √ M²t² - r t(Ms - Kr)- _____________________ rt on the other hand, with R = PyA [1 - 10-c(x + b)], x0 will be the root of equation (M + rx)cL 10 + r 10c(x + b) = 0 (12). Another solution, pointed out by PESEK and HEADY, is to maximize the function z = sx + tx² _________ m + rx where the numerator is the additional income due to the nutrient, and m is the fixed cost of fertilization. This leads to a solution x+ = - mt - √m²t² - mrst (13) _________________ rt However, we must have x+< _r_-_s_ I if we want to satisfy t _dy_ > r. dx This condition is satisfied only if we have m < _(s__-__r)² (14), - 4 t a restriction apparently not perceived by PESEK and HEADY. A similar reasoning using Mitscherlich's law leads to equation (mcL 10 + r) + cr(L 10)x - r 10cx = 0 (15), with a similar restriction. As an example, data of VIEGAS referring to fertilization of corn (maize) gave the equation y - 1534 + 22.99 x - 0. 1069 x², with x in kg/ha of the cereal. With the prices of Cr$ 5.00 per kilo of maize, Cr$ 26.00 per kilo of P2O3,. and M = Cr$ 5,000.00, we obtain x0 = 61 kg/ha of P(2)0(5). A similar reasoning using Mitscherlich's law leads to x0 = 53 kg/ha. Now, if we take in account only the fixed cost of fertilization m = Cr$ 600.00 per hectare, we obtain from (13) x+ = 51 kg/ha of P2O5, while (14) gives x+ - 41 kg/ha. Note that if m = Cr$ 5,000.00, we obtain by formula (13) x+ = 88 kg/ha of P2O5, a solution which is not valid, since condition (14) is not satisfied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the genetic interaction of Yl Y3 Y7 in producing yellow endosperm in maize. The new data presented are in accordance with preliminary notes on the same subject. The recessive yl, y3 and y7produce respectively green plants, albescent plants and white seedlings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According previous studies about longevity in maize by ACCORSI e ADÂMOLI DE BARROS, (1961) the authors presents in this paper the results of work on longevity of seedlings of beans. Seeds were separated in three groups according their weight, as followings: small 80-120 mg; medium 130-140 mg and big 150-200 mg. The sowing of the seeds was made in pure sand and the seedlings were distributed in distil. water and in complete solution of Arnon and Hoagland. Each treatment was made in two replications with eight seedlings by treatment. At present time the following conclusions can be related: 1.°) - Eight days after germination, the cotiledones of all the seedlings started to fell down, fourteen days after, all cotiledones had fell down. 2.°) - Fifteen days after germination, the seedlings in nutritive solution showed better development than those in distil. water. Table I e II gives results. 3.°) - All seedlings in distil. water showed symptoms of N, Ca, Fe deficiencies. 4.°) - Twenty nine days after germination the seedlings in distil. water manifested exhaust trace, by falling of the leaves and death of some plants although the aplicai buds keep green. 5.°) - After thirty-one days the plants in nutritives solution was in better condition than those in distil. water, although some alteration aboved mentioned was observed. The causes of this alteration are being studied. 6.°) - In many plants in complet solution the seminal leaves showed clorosis initial and some with necrosis, although apical buds keeps in ativity. 7.°) - Symptoms of clorosis and necrosis in diferents stages were observed in all leaflet; these symptoms were more strong in the groups of little seed and medium seeds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant cell wall is a strong fibrillar network that gives each cell its stable shape. It is constituted by a network of cellulose microfibrils embedded in a matrix of polysaccharides, such as xyloglucans. To enlarge, cells selectively loosen this network. Moreover, there is a pectin-rich intercellular material, the middle lamella, cementing together the walls of adjacent plant cells. Xyloglucan endotransglucosylase/hydrolases (XTHs) are a group of enzymes involved in the reorganisation of the cellulose-xyloglucan framework by catalysing cleavage and re-ligation of the xyloglucan chains in the plant cell wall, and are considered cell wall loosening agents. In the laboratory, it has been isolated and characterised a XTH gene, ZmXTH1, from an elongation root cDNA library of maize. To address the cellular function of ZmXTH1, transgenic Arabidopsis thaliana plants over-expressing ZmXTH1 (under the control of the CaMV35S promoter) were generated. The aim of the work performed was therefore the characterisation of these transgenic plants at the ultrastructural level, by transmission electron microscopy (TEM).The detailed cellular phenotype of transgenic plants was investigated by comparing ultra-thin transverse sections of basal stem of 5-weeks old plants of wild type (Col 0) and 35S-ZmXTH1 Arabidopsis plants. Transgenic plants show modifications in the cell walls, particularly a thicker middle lamella layer with respect the wild type plants, supporting the idea that the overexpression of ZmXTH1 could imply a pronounced wall-loosening. In sum, the work carried out reinforces the idea that ZmXTH1 is involved in the cell wall loosening process in maize.  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Es presenta un resum dels resultats dels assaigs d’avaluació de varietats de blat de moro de cicle 700 i 600, obtinguts en la zona litoral de Girona, en el marc de la Xarxa d’Experimentació de Varietats de l’IRTA. S’han assajat híbrids convencionals i transgènics derivats del MON810, que incorporen resistència als barrinadors. Amb els resultats de quatre anys d’assaig han destacat principalment les varietats HELEN, ELEONORA, TIETAR, PR32R42, ASTURIAL i PR33P66, sense diferències significatives entre elles. Les varietats transgèniques s’han assajat un màxim de tres anys havent mostrat algunes d’elles una alta productivitat. Entre aquestes han destacat PR32P76, DKC6575, PR33P67 i HELEN Bt, si bé sense diferències significatives amb el testimoni ELEONORA. També amb els resultats de tres anys d’assaig cal remarcar la varietat de blat de moro convencional PR32W86, que ha mostrat un nivell productiu similar a les millors transgèniques. Amb només dos anys d’assaig ha destacat principalment la varietat transgènica BELES SUR.