936 resultados para MICRODISC ELECTRODES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the growth and characterization of SrRuO3 single layers and SrRuO3/SrTiO3/SrRuO3 heterostructures grown on SrTiO3(100) substrates. The thickness dependence of the coercivity was determined for these single layers. Heterostructures with barrier thickness tb=1, 2.5, and 4 nm were fabricated, with electrodes having thickness ranging from 10 to 100 nm. The hysteresis loops of heterostructures with tb=2.5¿nm, 4 nm reveal uncoupled magnetic switching of the electrodes. Therefore, these heterostructures can be used for the fabrication of magnetic tunneling junctions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly transparent and stoichiometric boron nitride (BN) films were deposited on both electrodes (anode and cathode) of a radio-frequency parallel-plate plasma reactor by the glow discharge decomposition of two gas mixtures: B2H6-H2-NH3 and B2H6-N2. The chemical, optical, and structural properties of the films, as well as their stability under long exposition to humid atmosphere, were analyzed by x-ray photoelectron, infrared, and Raman spectroscopies; scanning and transmission electron microscopies; and optical transmittance spectrophotometry. It was found that the BN films grown on the anode using the B2H6-H2-NH3 mixture were smooth, dense, adhered well to substrates, and had a textured hexagonal structure with the basal planes perpendicular to the film surface. These films were chemically stable to moisture, even after an exposition period of two years. In contrast, the films grown on the anode from the B2H6-N2 mixture showed tensile stress failure and were very unstable in the presence of moisture. However, the films grown on the cathode from B2H6-H2-NH3 gases suffered from compressive stress failure on exposure to air; whereas with B2H6-N2 gases, adherent and stable cathodic BN films were obtained with the same crystallographic texture as anodic films prepared from the B2H6-H2-NH3 mixture. These results are discussed in terms of the origin of film stress, the effects of ion bombardment on the growing films, and the surface chemical effects of hydrogen atoms present in the gas discharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Electrical stimulation is a new way to treat digestive disorders such as constipation. Colonic propulsive activity can be triggered by battery operated devices. This study aimed to demonstrate the effect of direct electrical colonic stimulation on mean transit time in a chronic porcine model. The impact of stimulation and implanted material on the colonic wall was also assessed. Three pairs of electrodes were implanted into the caecal wall of 12 anaesthetized pigs. Reference colonic transit time was determined by radiopaque markers for each pig before implantation. It was repeated 4 weeks after implantation with sham stimulation and 5 weeks after implantation with electrical stimulation. Aboral sequential trains of 1-ms pulse width (10 V; 120 Hz) were applied twice daily for 6 days, using an external battery operated stimulator. For each course of markers, a mean value was computed from transit times obtained from individual pig. Microscopic examination of the caecum was routinely performed after animal sacrifice. A reduction of mean transit time was observed after electrical stimulation (19 +/- 13 h; mean +/- SD) when compared to reference (34 +/- 7 h; P = 0.045) and mean transit time after sham stimulation (36 +/- 9 h; P = 0.035). Histological examination revealed minimal chronic inflammation around the electrodes. Colonic transit time measured in a chronic porcine model is reduced by direct sequential electrical stimulation. Minimal tissue lesion is elicited by stimulation or implanted material. Electrical colonic stimulation could be a promising approach to treat specific disorders of the large bowel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thin-layer electrodeposition the dissipated electrical energy leads to a substantial heating of the ion solution. We measured the resulting temperature field by means of an infrared camera. The properties of the temperature field correspond closely with the development of the concentration field. In particular, we find that the thermal gradients at the electrodes act similar to a weak additional driving force to the convection rolls driven by concentration gradients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurally adjusted ventilatory assist or NAVA is a new assisted ventilatory mode which, in comparison with pressure support, leads to improved patient-ventilator synchrony and a more variable ventilatory pattern. It also improves arterial oxygenation. With NAVA, the electrical activity of the diaphragm is recorded through a nasogastric tube equipped with electrodes. This electrical activity is then used to pilot the ventilator. With NAVA, the patient's respiratory pattern controls the ventilator's timing of triggering and cycling as well as the magnitude of pressurization, which is proportional to inspiratory demand. The effect of NAVA on patient outcome remains to be determined through well-designed prospective studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this tutorial review, we detail both the rationale for as well as the implementation of a set of analyses of surface-recorded event-related potentials (ERPs) that uses the reference-free spatial (i.e. topographic) information available from high-density electrode montages to render statistical information concerning modulations in response strength, latency, and topography both between and within experimental conditions. In these and other ways these topographic analysis methods allow the experimenter to glean additional information and neurophysiologic interpretability beyond what is available from canonical waveform analyses. In this tutorial we present the example of somatosensory evoked potentials (SEPs) in response to stimulation of each hand to illustrate these points. For each step of these analyses, we provide the reader with both a conceptual and mathematical description of how the analysis is carried out, what it yields, and how to interpret its statistical outcome. We show that these topographic analysis methods are intuitive and easy-to-use approaches that can remove much of the guesswork often confronting ERP researchers and also assist in identifying the information contained within high-density ERP datasets

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: We have developed a nonviral gene therapy method based on the electrotransfer of plasmid in the ciliary muscle. These easily accessible smooth muscle cells could be turned into a biofactory for any therapeutic proteins to be secreted in a sustained manner in the ocular media. METHODS: Electrical conditions, design of electrodes, plasmid formulation, method and number of injections were optimized in vivo in the rat by localizing β-galactosidase expression and quantifying reporter (luciferase) and therapeutic (anti-tumor necrosis factor) proteins secretion in the ocular media. Anatomical measurements were performed via human magnetic resonance imaging to design a human eye-sized prototype that was tested in the rabbit. RESULTS: In the rat, transscleral injection of 30 µg of plasmid diluted in half saline (77 mM NaCl) followed by application of eight square-wave electrical pulses (15 V, 10 ms, 5.3 Hz) using two platinum/iridium electrodes, an internal wire and an external sheet, delivered plasmid efficiently to the ciliary muscle fibers. Gene transfer resulted in a long-lasting (at least 5 months) and plasmid dose-/injection number- dependent secretion of different molecular weight proteins mainly in the vitreous, without any systemic exposure. Because ciliary muscle anatomical measurements remained constant among ages in adult humans, an integrated device comprising needle-electrodes was designed and manufactured. Its usefulness was validated in the rabbit. CONCLUSIONS: Plasmid electrotransfer to the ciliary muscle with a suitable medical device represents a promising local and sustained protein delivery system for treating posterior segment diseases, avoiding repeated intraocular injections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Self-potential (SP) data are of interest to vadose zone hydrology because of their direct sensitivity to water flow and ionic transport. There is unfortunately little consensus in the literature about how to best model SP data under partially saturated conditions, and different approaches (often supported by one laboratory data set alone) have been proposed. We argue that this lack of agreement can largely be traced to electrode effects that have not been properly taken into account. A series of drainage and imbibition experiments were considered in which we found that previously proposed approaches to remove electrode effects were unlikely to provide adequate corrections. Instead, we explicitly modeled the electrode effects together with classical SP contributions using a flow and transport model. The simulated data agreed overall with the observed SP signals and allowed decomposing the different signal contributions to analyze them separately. After reviewing other published experimental data, we suggest that most of them include electrode effects that have not been properly taken into account. Our results suggest that previously presented SP theory works well when considering the modeling uncertainties presently associated with electrode effects. Additional work is warranted to not only develop suitable electrodes for laboratory experiments but also to assure that associated electrode effects that appear inevitable in longer term experiments are predictable, so that they can be incorporated into the modeling framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently a fingering morphology, resembling the hydrodynamic Saffman-Taylor instability, was identified in the quasi-two-dimensional electrodeposition of copper. We present here measurements of the dispersion relation of the growing front. The instability is accompanied by gravity-driven convection rolls at the electrodes, which are examined using particle image velocimetry. While at the anode the theory presented by Chazalviel et al. [J. Electroanal. Chem. 407, 61 (1996)] describes the convection roll, the flow field at the cathode is more complicated because of the growing deposit. In particular, the analysis of the orientation of the velocity vectors reveals some lag of the development of the convection roll compared to the finger envelope.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, studies dealing with muscle shortening have concentrated on assessing its impact on conduction velocity, and to this end, electrodes have been located between the end-plate and tendon regions. Possible morphologic changes in surface motor unit potentials (MUPs) as a result of muscle shortening have not, as yet, been evaluated or characterized. Using a convolutional MUP model, we investigated the effects of muscle shortening on the shape, amplitude, and duration characteristics of MUPs for different electrode positions relative to the fibre-tendon junction and for different depths of the MU in the muscle (MU-to-electrode distance). It was found that the effects of muscle shortening on MUP morphology depended not only on whether the electrodes were between the end-plate and the tendon junction or beyond the tendon junction, but also on the specific distance to this junction. When the electrodes lie between the end-plate and tendon junction, it was found that (1) the muscle shortening effect is not important for superficial MUs, (2) the sensitivity of MUP amplitude to muscle shortening increases with MU-to-electrode distance, and (3) the amplitude of the MUP negative phase is not affected by muscle shortening. This study provides a basis for the interpretation of the changes in MUP characteristics in experiments where both physiological and geometrical aspects of the muscle are varied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intellectual disability has long been associated with deficits in socio-emotional processing. However, studies investigating brain dynamics of maladaptive socio-emotional skills associated with intellectual disability are scarce. Here, we compared differences in brain activity between low intelligence quotient (I.Q.<75, N=13) and normal controls (N=15) while evaluating their subjective emotions. Positive (P) and negative (N) valenced pictures were presented one at a time to participants of both groups, at a rate of ¾. The task required that each participant evaluate their subjective emotion and press a predefined push-button when done, alternatively P and N. Electroencephalographic (EEG) signals were continuously recorded, and the 1000ms time window following each picture was analyzed offline for power in frequency domain. Alpha low (8-10Hz) and upper (10-13Hz) frequency bands were then compared for both groups and for both P and N emotions in 12 distributed scalp electrodes. The qualitative evaluation of emotions was similar between both groups, with constant longer reaction times for the low IQ participants. The EEG signal comparison shows marked power decrease in upper alpha frequency range for N emotions in low intelligence group. Otherwise no significant difference was noticed between low and normal IQ. Main findings of the present study are (1) results do not support the hypothesis that impairment in developmental intelligence roots in maladaptive emotional processing; (2) the strong alpha power suppression during negative-induced emotions suggests the involvement of an extended neural network and more effortful inhibition processes than positive ones. We call for further studies with a larger sample.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Direct colonic electrical stimulation may prove to be a treatment option for specific motility disorders such as chronic constipation. The aim of this study was to provoke colonic contractions using electrical stimulation delivered from a battery-operated device. METHODS: Electrodes were inserted into the caecal seromuscular layer of eight anaesthetized pigs. Contractions were induced by a neurostimulator (Medtronic 3625). Caecal motility was measured simultaneously by video image analysis, manometry and a technique assessing colonic transit. RESULTS: Caecal contractions were generated using 8-10 V amplitude, 1000 micros pulse width, 120 Hz frequency for 10-30 s, with an intensity of 7-15 mA. The maximal contraction strength was observed after 20-25 s. Electrical stimulation was followed by a relaxation phase of 1.5-2 min during which contractions propagated orally and aborally over at least 10 cm. Spontaneous and stimulated caecal motility values were significantly different for both intraluminal pressure (mean(s.d.) 332(124) and 463(187) mmHg respectively; P < 0.001, 42 experiments) and movement of contents (1.6(0.9) and 3.9(2.8) mm; P < 0.001, 40 experiments). CONCLUSION: Electrical stimulation modulated caecal motility, and provoked localized and propagated colonic contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of GABA(B) receptors in sleep is still poorly understood. GHB (γ-hydroxybutyric acid) targets these receptors and is the only drug approved to treat the sleep disorder narcolepsy. GABA(B) receptors are obligate dimers comprised of the GABA(B2) subunit and either one of the two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b). To better understand the role of GABA(B) receptors in sleep regulation, we performed electroencephalogram (EEG) recordings in mice devoid of functional GABA(B) receptors (1(-/-) and 2(-/-)) or lacking one of the subunit 1 isoforms (1a(-/-) and 1b(-/-)). The distribution of sleep over the day was profoundly altered in 1(-/-) and 2(-/-) mice, suggesting a role for GABA(B) receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent role for GABA(B1a) compared with the GABA(B1b) isoform. Moreover, we found that GABA(B1a) protects against the spontaneous seizure activity observed in 1(-/-) and 2(-/-) mice. We also evaluated the effects of the GHB-prodrug GBL (γ-butyrolactone) and of baclofen (BAC), a high-affinity GABA(B) receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1(-/-) and 2(-/-) mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1(-/-) and 2(-/-) mice. The differential effects of GBL and BAC might be attributed to differences in GABA(B)-receptor affinity. These results also indicate that all GBL effects are mediated through GABA(B) receptors, although these receptors do not seem to be involved in mediating the BAC-induced hypersomnia.