963 resultados para MECHANICAL ALLOYING
Resumo:
Using a variational method, a general three-dimensional solution to the problem of a sliding spherical inclusion embedded in an infinite anisotropic medium is presented in this paper. The inclusion itself is also a general anisotropic elastic medium. The interface is treated as a thin interface layer with interphase anisotropic properties. The displacements in the matrix and the inclusion are expressed as polynomial series of the cartesian coordinate components. Using the virtual work principle, a set of linear algebraic equations about unknown coefficients are obtained. Then the general sliding spherical inclusion problem is accurately solved. Based on this solution, a self-consistent method for sliding polycrystals is proposed. Combining this with a two-dimensional model of an aggregate polycrystal, a systematic analysis of the mechanical behaviour of sliding polycrystals is given in detail. Numerical results are given to show the significant effect of grain boundary sliding on the overall mechanical properties of aggregate polycrystals.
Resumo:
The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.
Resumo:
Bamboo reinforced epoxy possesses reasonably good properties to waarrant its use as a structural material, and is fabricated by utilizing bamboo, an abundant material resource, in the technology of fibre composites. Literature on bamboo-plastics composites is rare. This work is an experimental study of unidirectional bamboo-epoxy laminates of varying laminae number, in which tensile, compressive, flexural and interlaminar shear properties are evaluated. Further, the disposition of bamboo fibre, the parenchymatous tissue, and the resin matrix under different loading conditions are examined. Our results show that the specific strength and specific modulus of bamboo-epoxy laminates are adequate, the former being 3 to 4 times that of mild steel. Its mechanical properties are generally comparable to those of ordinary glass-fibre composites. The fracture behaviour of bamboo-epoxy under different loading conditions were observed using both acoustic emission techniques and scanning electron microscopy. The fracture mode varied with load, the fracture mechanism being similar to glass and carbon reinforced composites. Microstructural analyses revealed that natural bamboo is eligibly a fibre composite in itself; its inclusion in a plastic matrix will help solve the problems of cracking due to desiccation and bioerosion caused by insect pests. Furthermore, the thickness and shape of the composite can be tailored during fabrication to meet specific requirements, thereby enabling a wide spectrum of applications.
Resumo:
The hierarchial structure and mathematical property of the simplified Navier-Stokesequations (SNSE) are studied for viscous flow over a sphere and a jet of compressible flu-id. All kinds of the hierarchial SNSE can be divided into three types according to theirmathematical property and also into five groups according to their physical content. Amultilayers structure model for viscous shear flow with a main stream direction is pre-sented. For the example of viscous incompressible flow over a flat plate there existthree layers for both the separated flow and the attached flow; the character of thetransition from the three layers of attached flow to those of separated flow is elucidated.A concept of transition layer being situated between the viscous layer and inviscidlayer is introduced. The transition layer features the interaction between viscous flow andinviscid flow. The inner-outer-layers-matched SNSE proposed by the present author inthe past is developed into the layers matched (LsM)-SNSE.
Resumo:
Microcracks can have a strong influence on the elastic and fracture mechanical properties of rocks if they are numerous, or if they are orientated in unfavourable directions in anisotropic rocks in particular. This paper presents results from a great number of mechanical tests on Stripa granite containing various amounts of microcracks. Variations in the microcrack density were obtained by shock-heating the rock at different temperatures in the range 100–600°C for 3 h.
Resumo:
A mantle plume is understood as a hot, narrow, upwelling flow in the earth's mantle and accompanied by an efficient transfer of mass and energy from deep to upper layer of the earth. The cylindrical plume in earth's mantle plays an important role in explaining the origin of the surface hot spots and linear island chains. From the basic hydrodynamical equations, the detailed mechanical and thermal structure of a cylindrical plume of Newtouian fluids with temperature and pressure-dependent viscosity are given in the present paper. For two sets of rheological parameters the radial profiles of upward velocity, temperature and viscosity in the plume and radiuses of the plume at various depths have been calculated.
Resumo:
On the condition that the distribution of velocity and temperature at the mid-plane of a mantle plume has been obtained (pages 213–218, this issue), the problem of determining the lateral structure of the plume at a given depth is reduced to solving an eigenvalue problem of a set of ordinary differential equations with five unknown functions, with an eigenvalue being related to the thermal thickness of the plume at this depth. The lateral profiles of upward velocity, temperature and viscosity in the plume and the thickness of the plume at various depths are calculated for two sets of Newtonian rheological parameters. The calculations show that the precondition for the existence of the plume, δT/L 1 (L = the height of the plume, δT = lateral distance from the mid-plane), can be satisfied, except for the starting region of the plume or near the base of the lithosphere. At the lateral distance, δT, the upward velocity decreases to 0.1 – 50% of its maximum value at different depths. It is believed that this model may provide an approach for a quantitative description of the detailed structure of a mantle plume.