977 resultados para Määttä, Timo: "Sinne, missä hätä on suurin"
Resumo:
In order to assess the effects of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis), specimens were reared in aquarium tanks and exposed to elevated conditions of temperature (+3°C) and acidity (-0.3 pH units) for a period of 10 months. The whole system comprised a factorial experimental design with 4 treatments (3 aquaria per treatment): control, lowered pH, elevated temperature, and lowered pH/elevated temperature. Mortality was estimated on a weekly basis and every 2 months, various biometrical parameters and physiological processes were measured: somatic and shell growth, metabolic rates and body fluid acid-base parameters. Mussels were highly sensitive to warming, with 100% mortality observed under elevated temperature at the end of our experiment in October. Mortality rates increased drastically in summer, when water temperature exceeded 25°C. In contrast, our results suggest that survival of this species will not be affected by a pH decrease of 0.3 in the Mediterranean Sea. Somatic and shell growth did not appear very sensitive to ocean acidification and warming during most of the experiment, but were reduced, after summer, in the lowered pH treatment. This was consistent with measured shell net dissolution and observed loss of periostracum, as well as uncompensated extracellular acidosis in the lowered pH treatment indicating a progressive insufficiency in acid-base regulation capacity. However, based on the present dataset, we cannot elucidate if these decreases in growth and regulation capacities after summer are a consequence of lower pH levels during that period or a consequence of a combined effect of acidification and warming. To summarize, while ocean acidification will potentially contribute to lower growth rates, especially in summer when mussels are exposed to sub-optimal conditions, ocean warming will likely pose more serious threats to Mediterranean mussels in this region in the coming decades.
Resumo:
Real time Tritium concentrations in air in two chemical forms, HT and HTO, coming from an ITER-like fusion reactor as source were coupled the European Centre Medium Range Weather Forecast (ECMWF) numerical model with the Lagrangian Atmospheric-particle dispersion model FLEXPART. This tool was analyzed in nominal tritium discharge operational reference and selected incidental conditions affecting the Western Mediterranean Basin during 45 days during summer 2010 together with surface “wind observations” or weather data based in real hourly observations of wind direction and velocity providing a real approximation of the tritium behavior after the release to the atmosphere from a fusion reactor. From comparison with NORMTRI - a code using climatologically sequences as input - over the same area, the real time results have demonstrated an apparent overestimation of the corresponding climatologically sequence of Tritium concentrations in air outputs, at several distances from the reactor. For this purpose two development patterns were established. The first one was following a cyclonic circulation over the Mediterranean Sea and the second one was based on the plume delivered over the Interior of the Iberian Peninsula and Continental Europe by another stabilized circulation corresponding to a High Pressure System. One of the important remaining activities defined then, was the qualification tool. In order to validate the model of ECMWF/FLEXPART we have developed of a new complete data base of tritium concentrations for the months from November 2010 to March 2011 and defined a new set of four patterns of HT transport in air, in each case using real boundary conditions: stationary to the North, stationary to the South, fast and very fast displacement. Finally the differences corresponding to those four early patterns (each one in assessments 1 and 2) has been analyzed in terms of the tuning of safety related issues and taking into account the primary phase o- - f tritium modeling, from its discharge to the atmosphere to the deposition on the ground, will affect to the complete tritium environmental pathway altering the chronic dose by absorption, reemission and ingestion both from elemental tritium, HT and from the oxide of tritium, HTO
Resumo:
Cover crops in Mediterranean vineyards are scarcely used due to water competition between the cover crop and the grapevine; however, bare soil management through tillage or herbicides tends to have negative effects on the soil over time (organic matter decrease, soil structure and soil fertility degradation, compaction, etc). The objective of this study was to understand how soil management affects soil fertility, compaction and infiltration over time. To this end, two bare soil techniques were compared, tillage (TT) and total herbicide (HT) with two cover crops; annual cereal (CT) and annual grass (AGT), established for 8 years. CT treatment showed the highest organic matter content, having the biggest amount of biomass incorporated into the soil. The annual adventitious vegetation in TT treatment (568 kg dry matter ha-1) that was incorporated into the soil, kept the organic matter content higher than HT levels and close to AGT level, in spite of the greater aboveground annual biomass production of this treatment (3632 kg dry matter ha-1) whereas only its roots were incorporated into the soil. TT presented the highest bulk density under the tractor track lines and a greatest resistance to penetration (at 0.2 m depth). AGT presented bulk density values (upper 0.4 m) lower than TT and penetration resistance in CT lower (at 0.20 m depth) than TT too. Effects of soil management in vineyard on soil physical and chemical characteristics - ResearchGate. Available from: http://www.researchgate.net/publication/268520480_Effects_of_soil_management_in_vineyard_on_soil_physical_and_chemical_characteristics [accessed May 20, 2015].