983 resultados para Luminescence lifetimes
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Radioluminescence (RL) emissions were obtained for the BaZrO3 self-assembled nanocrystals under decaoctahedral shape, if produced via microwave-assisted hydrothermal method. Trapped F centers created within the band gap are the result of order-disorder effects, which act as key factors supporting significant RL emission through a detrapping process. The influences of size and morphology on RL properties are take into account. No radiation damage or loss of emission intensity was observed. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Blue luminescence emission around 480 nm through cooperative upconversion from pairs of Yb3+ ions implanted into 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses and excited by a cw laser at 1.064 mum is demonstrated. Cooperative luminescence emission enhancement owing to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium ions is also observed. The experimental results revealed a fourfold enhancement in the cooperative luminescence emission when the sample was heated in the temperature range of 20 degreesC-260 degreesC. The thermally induced enhancement is assigned to the effective absorption cross-section for the ytterbium ions which is an increasing function of the medium temperature. (C) 2002 American Institute of Physics.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Photo luminescence: A probe for short, medium and long-range self-organization order in ZrTiO4 oxide
Resumo:
Photoluminescent disordered ZrTiO4 powders were obtained by the polymeric precursor soft-chemical method. This oxide system (ordered and disordered) was characterized by photoluminescence, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry and UV vis absorption experiments. The UV absorption tail formation in the disordered oxides was related to the diminution of optical band gap. In the disordered phase, this oxide displayed broad band photoluminescence caused by change in coordination number of titanium and zirconium with oxygen atoms. The gap decreased from 3.09 eV in crystalline oxide to 2.16 eV in disordered oxide. The crystalline oxide presented an orthorhombic alpha-PbO2-type structure in which Zr4+ and Ti4+ were randomly distributed in octahedral coordination polyhedra with oxygen atoms. The amorphous-crystalline transition occurred at almost 700 degrees C, at which point the photoluminescence vanished. The Raman peak at close to 80-200 cm(-1) indicated the presence of locally ordered Ti-O-n and Zr-O-n polyhedra in disordered photoluminescent oxides. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Results on the luminescence properties of Eu3+ in Ba2SiO4 sites and the presence of Eu3+-O2- associates are reported. The Ba2SiO4:Eu3+ emission spectra showed two groups of transitions that might be assigned to the D-5(0) --> F-7(0) one. In each group at least two lines were observed. This is possibly related to the different emission centers, attributed to Eu3+ occupying the Ba2+ sites, and to Eu3+-O2- associates in interstices. Excitation spectra presented two CT bands at 270 and 340 nm related to each emission center.
Resumo:
Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.
Resumo:
A joint experimental and theoretical study has been carried out to rationalize the photoluminescence properties of SrTiO3 perovskite thin films synthesized through a soft chemical processing. Only the amorphous samples present photoluminescence at room temperature. From the theoretical side, first principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline (ST-c) and an asymmetric (ST-a) model. Electronic properties are analyzed in the light of the experimental results and their relevance in relation to the PL behavior of ST is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We investigate the linear optical properties and energy transfer processes in tungstate fluorophosphate glass doped with thulium (Tm3+) and neodymium (Nd3+) ions. The linear absorption spectra from 370 to 3000 nm were obtained. Transitions probabilities, radiative lifetimes, and transition branching ratios were determined using the Judd-Ofelt [Phys. Rev. 127, 750 (1962); J. Chem. Phys. 37, 511 (1962)] theory. Frequency up-conversion to the blue region and fluorescence in the infrared were observed upon pulsed excitation in the range of 630-700 nm. The excitation spectra of the luminescence were obtained to understand the origin of the signals. The temporal decay of the fluorescence was measured for different concentrations of the doping ions. Energy transfer rates among the Tm3+ and Nd3+ ions were also determined.
Resumo:
Nanocrystallized boehmite gamma-AlOOH center dot nH(2)O had been synthesized by spray-drying (SD) of a solution of aluminium tri-sec-butoxide peptized by nitric acid. The sub-micronic spherical particles obtained had an average diameter of 500 nm and were built of 100 nm or less platelet-like sub-particles. The average crystallite size calculated from XRD was 1.6 nm following the b axis (i.e. one unit cell) and 3-4 nm perpendicular to b. As a result of the nanometric sizes of crystallites, there was a large surface free for water adsorption and it was found to be n = 1.18 +/- 0.24H(2)O per AlOOH. The SD spheres spontaneously dispersed in water at room temperature and formed stable-over months-suspensions with nanometre-size particles (25-85 nm). Luminescent europium-doped nanocrystallized boehmites AlOOH: Eu (Al0.98Eu0.02OOH center dot nH(2)O) were synthesized the same way by SD and demonstrated the same crystallization properties and morphologies as the undoped powders. It is inferred from the Eu3+ luminescence spectroscopy that partly hydrated europium species are immobilized on the boehmite nanocrystals where they are directly bonded to alpha(OH) groups of the AlOOH surface. The europium coordination is schematically written [Eu3+(OH)(alpha)(H2O)(7-alpha/2)]. The europium-doped boehmite from SD spontaneously dispersed in water: the luminescence spectroscopy proves that most of the Eu3+ ions were detached from the NPs during water dispersion. The AlOOH: Eu nanoparticles were modified by the amine acid asparagine (ASN). The modification aimed to render the NPs compatible for further bio-functionalization. After surface modification, the NPs easily dispersed in water; the luminescence spectra after dispersion prove that the Eu3+ ions were held at the boehmite surface.
Resumo:
This paper aims to describe the synthesis of the semi-crystalline and crystalline powder of lanthanum doped with zirconium titanate (65/35), LZT through Pechini method. The analysis done by Raman demonstrated that semi-crystalline phase at 550 degrees C and crystalline phase after 600 degrees C were formed. The XRD pattern shows the ZrTiO4 phase formation demonstrating that La substitutions into the lattice take place. The calcined powder at different temperatures shows a semi-crystalline phase presenting photoluminescence effect when processed at low temperatures. From 300 to 400 degrees C a broadband is observed at 563 nm and 568 nm, respectively. Defects creation such as: Zr3+ center dot Vo(center dot center dot) and Ti3+ - V-O(center dot center dot), Zr and Ti replaced by La with vacancy formation, impurities and imperfections contributed to the photoluminescence effect. However, the main emission is due to a reverse Ti4+ -> O2- or/and Zr4+ -> O2- transition that occur within a regular titanate or zirconate eight-fold coordination [BO8-delta], B = Zr4+, Ti4+. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work the La1.8Eu0.2O3 coating on nanometric alpha-alumina, alpha-Al2O3@La1.8Eu0.2O3, was prepared for the first time by a soft chemical method. The powder was heat-treated at 100, 400, 800 and 1200 degrees C for 2 h. X-ray powder diffraction patterns (XRD), transmission electronic microscopy (TEM), emission and excitation spectra, as well as Eu3+, lifetime were used to characterize the material and to follow the changes in structure as the heating temperature increases. The Eu3+ luminescence data revealed the characteristic transitions D-5(0) --> F-7(J) (J = 0, 1 and 3) of Eu3+ at around 580, 591 and 613 nm, respectively, when the powders were excited by 393 nm. The red color of the samples changed to yellow when the powder was annealed at 1200 degrees C. The decrease in the (D-5(0) --> F-7(2))/(D-5(0) --> F-7(1)) ratio from around 5.0 for samples heated at lower temperatures to 3.1 for samples annealed at 1200 degrees C is consistent with a higher symmetry of the Eu3+ at higher temperature. The excitation spectra of the samples also confirms this change by the presence of a more intense and broad band at around 317 nm, instead of the presence of the characteristic peak at 393 mn, which corresponds to the F-7(0) --> L-5(6) transition of the Eu3+. The lifetimes of the D-5(0) --> F-7(2) transition of Eu3+ for the samples heat-treated at 100, 400, 800 and 1200 degrees C was evaluated as 0.57, 0.72, 0.43 and 0.31 ms, respectively. (C) 2006 Elsevier Ltd. All fights reserved.
Resumo:
During a study of the LaF3-ZrF4 system, both La3Zr4F25 and alpha-LaZr3F15 compounds have been evidenced. Their crystal structures have been determined from single-crystal X-ray diffraction data. La3Zr4F25 crystallises in the cubic system with a= 12.384 Angstrom and I (4) over bar 3d space group (no. 220). Its crystal structure is built up of (ZrF6)(2-) octahedra and (LaF8)(5-) dodecahedra sharing corners. The low temperature form, alpha, of LaZr3F15 is orthorhombic (space group Pmmn, no. 59) with a = 15.721 Angstrom, b = 16.299 Angstrom, c= 8.438 Angstrom. Its structure is built of corner-sharing tricaped trigonal prisms surrounding the La3+ ions and both octahedra and monocapped trigonal prisms encompassing the Zr4+ ions. This structure is characterised by dynamically disordered (ZrF6)(2-) complex anions.The Eu3+ luminescence properties of these phases have been investigated and are discussed in relationship with their crystal structures.
Resumo:
Frequency upconversion luminescence in erbium-doped PbGeO3-PbF2-CdF2-based transparent glass ceramics (TGC) under 980 nm infrared excitation is investigated. Upconversion emission signals around 410, 525, 550, 660, and 850 nm were generated and identified as due to the H-2(9/2) H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground-state, and S-4(3/2)-I-4(13/2), respectively. The erbium ions excited-state emitting levels were populated via a combination of stepwise ground-state absorption (GSA), excited-state absorption (ESA), and cross-relaxation processes. The results also disclosed that both blue (410 nm) and red (660 nm) upconversion emission signals in the transparent glass ceramic sample presented twice as much intensity as compared to its vitreous counterpart. (C) 2003 Elsevier B.V. All rights reserved.