719 resultados para Lighter lanthanides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biostratigraphic, sedimentologic, and geochemical analyses of hemipelagic periplatform sediments from shallow gravity cores taken during the Ocean Drilling Program Leg 194 site survey reveal that, despite the strong currents and almost infilled intraplatform bathymetric depressions, recent sedimentation at the location of the Leg 194 drill sites recorded glacial-interglacial cycles. Sediment analyses included determination of sediment type, carbonate content, bulk stable oxygen isotope composition, and calcareous nannofossil zones. Glacial periods, identified by elevated bulk d18O, are characterized by darker sediment color, coarser grain size, and lower carbonate content, whereas interglacial periods yield lighter-colored, finer, and carbonate-rich sediments. These data from the shallowmost few meters of Marion Plateau sediments complement the subsurface information of Leg 194 holes, in which the top few meters have not been analyzed in such a high-resolution fashion. In addition, these gravity cores are more likely to have recovered the sediments closest to the sediment/water interface as compared to the hydraulic piston cores collected during Leg 194.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study multibeam angular backscatter data acquired in the eastern slope of the Porcupine Seabight are analysed. Processing of the angular backscatter data using the 'NRGCOR' software was made for 29 locations comprising different geological provinces like: carbonate mounds, buried mounds, seafloor channels, and inter-channel areas. A detailed methodology is developed to produce a map of angle-invariant (normalized) backscatter data by correcting the local angular backscatter values. The present paper involves detailed processing steps and related technical aspects of the normalization approach. The presented angle-invariant backscatter map possesses 12 dB dynamic range in terms of grey scale. A clear distinction is seen between the mound dominated northern area (Belgica province) and the Gollum channel seafloor at the southern end of the site. Qualitative analyses of the calculated mean backscatter values i.e., grey scale levels, utilizing angle-invariant backscatter data generally indicate backscatter values are highest (lighter grey scale) in the mound areas followed by buried mounds. The backscatter values are lowest in the inter-channel areas (lowest grey scale level). Moderate backscatter values (medium grey level) are observed from the Gollum and Kings channel data, and significant variability within the channel seafloor provinces. The segmentation of the channel seafloor provinces are made based on the computed grey scale levels for further analyses based on the angular backscatter strength. Three major parameters are utilized to classify four different seafloor provinces of the Porcupine Seabight by employing a semi-empirical method to analyse multibeam angular backscatter data. The predicted backscatter response which has been computed at 20° is the highest for the mound areas. The coefficient of variation (CV) of the mean backscatter response is also the highest for the mound areas. Interestingly, the slope value of the buried mound areas are found to be the highest. However, the channel seafloor of moderate backscatter response presents the lowest slope and CV values. A critical examination of the inter-channel areas indicates less variability within the estimated three parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sediment column overlying basement in the Lau Basin consists of a sequence of volcaniclastic turbidites interbedded with hemipelagic clayey nannofossil mixed sediments, overlain in turn by a sequence of hemipelagic clayey nannofossil oozes containing sporadic calcareous turbidites. The clayey nannofossil oozes and mixed sediments are pervasively stained by hydrothermally derived iron and manganese oxyhydroxides. Sharply defined, lighter colored bands occur in the hemipelagic sediments, immediately beneath some (but by no means all) volcaniclastic and calcareous turbidites. These are identified as reduction haloes, of a type previously identified in quite different turbidite/pelagic sequences. The haloes are attributed to the burial of labile surficial Corg by turbidites, followed by the remineralization of this Corg with Mn and Fe oxyhydroxides as electron acceptors. The resultant characteristic Mn and Fe concentration/depth profiles are described, and a model is proposed for their development. The color alteration of the halo is ascribed to the removal of Mn oxyhydroxides, because, although the Fe content fluctuates through the haloes, this does not appear to affect their color. Other elements (Co, Cu, and Ni) are also at low concentration levels in the haloes like Mn, consistent with remobilization and migration out of the halo section, although the profile shapes are not identical with those of Mn. The behavior of V is distinctive in that it appears to have migrated into the haloes to be enriched there. Haloes are unlikely to form if turbidite emplacement is erosive and removes the near-surface layer, which generally is the most fluid part of the sediment and contains the highest levels of reactive Corg to drive the reduction process. Conversely, the presence of a halo implies that emplacement of the overlying turbidite did not significantly erode the pre-existing sediment/water interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

About one third of the anthropogenic carbon dioxide (CO2) released into the atmosphere in the past two centuries has been taken up by the ocean. As CO2 invades the surface ocean, carbonate ion concentrations and pH are lowered. Laboratory studies indicate that this reduces the calcification rates of marine calcifying organisms, including planktic foraminifera. Such a reduction in calcification resulting from anthropogenic CO2 emissions has not been observed, or quantified in the field yet. Here we present the findings of a study in the Western Arabian Sea that uses shells of the surface water dwelling planktic foraminifer Globigerinoides ruber in order to test the hypothesis that anthropogenically induced acidification has reduced shell calcification of this species. We found that light, thin-walled shells from the surface sediment are younger (based on 14C and d13C measurements) than the heavier, thicker-walled shells. Shells in the upper, bioturbated, sediment layer were significantly lighter compared to shells found below this layer. These observations are consistent with a scenario where anthropogenically induced ocean acidification reduced the rate at which foraminifera calcify, resulting in lighter shells. On the other hand, we show that seasonal upwelling in the area also influences their calcification and the stable isotope (d13C and d18O) signatures recorded by the foraminifera shells. Plankton tow and sediment trap data show that lighter shells were produced during upwelling and heavier ones during non-upwelling periods. Seasonality alone, however, cannot explain the 14C results, or the increase in shell weight below the bioturbated sediment layer. We therefore must conclude that probably both the processes of acidification and seasonal upwelling are responsible for the presence of light shells in the top of the sediment and the age difference between thick and thin specimens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen and carbon isotope records are presented for the benthic foraminifer Cibicidoides wuellerstorfi from upper middle through lower upper Miocene (11.6-8.2 Ma) sediments recovered at intermediate water depth (1134 m) at Ocean Drilling Program Site 982 on Rockall Plateau. Oxygen isotopic values generally lighter than those for the Holocene indicate significantly warmer intermediate waters and/or less global ice volume during the late middle to early late Miocene than at the present. The most depleted oxygen isotope values occurred at around 10.5 Ma. After this time a long-term increase in d18O suggests a gradual increase in global ice volume and/or cooling of intermediate waters during the late Miocene. Comparison of the intermediate depth benthic foraminiferal carbon isotope record from Site 982 and records from various North Atlantic deep sites shows that intermediate waters were generally better ventilated than deep waters between 11.6 and 9.6 Ma. During this time period, increased ventilation of intermediate waters was linked to cooling or the build up of polar ice caps. The Mi events originally proposed by Miller et al. (1991, doi:10.1029/90JB02015) and Wright and Miller (1992, doi:10.2973/odp.proc.sr.120.193.1992) are difficult to identify with certainty in sediments sampled at high resolution (<10**4 year). Comparison of the high-resolution benthic d18O records from ODP Site 982 with the low-resolution benthic d18O record from Monte Gibliscemi (Mediterranean) show that Mi events, if real, may not be of importance as a stratigraphic tool in upper Miocene sedimentary sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isotopic composition of surface seawater is widely used to infer past changes in sea surface salinity using paired foraminiferal Mg/Ca and d18O from marine sediments. At low latitudes, paleosalinity reconstructions using this method have largely been used to document changes in the hydrological cycle. This method usually assumes that the modern seawater d18O (d18Osw)/salinity relationship remained constant through time. Modelling studies have shown that such assumptions may not be valid because large-scale atmospheric circulation patterns linked to global climate changes can alter the seawater d18Osw/salinity relationship locally. Such processes have not been evidenced by paleo-data so far because there is presently no way to reconstruct past changes in the seawater d18Osw/salinity relationship. We have addressed this issue by applying a multi-proxy salinity reconstruction from a marine sediment core collected in the Gulf of Guinea. We measured hydrogen isotopes in C37:2 alkenones (dDa) to estimate changes in seawater dD. We find a smooth, long-term increase of ~10 per mil in dDa between 10 and 3 kyr BP, followed by a rapid decrease of ~10 per mil in dDa between 3 kyr BP and core top to values slightly lighter than during the early Holocene. Those features are inconsistent with published salinity estimations based on d18Osw and foraminiferal Ba/Ca, as well as nearby continental rainfall history derived from pollen analysis. We combined dDa and d18Osw values to reconstruct a Holocene record of salinity and compared it to a Ba/Ca-derived salinity record from the same sedimentary sequence. This combined method provides salinity trends that are in better agreement with both the Ba/Ca-derived salinity and the regional precipitation changes as inferred from pollen records. Our results illustrate that changes in atmospheric circulation can trigger changes in precipitation isotopes in a counter-intuitive manner that ultimately impacts surface salinity estimates based on seawater isotopic values. Our data suggest that the trends in Holocene rainfall isotopic values at low latitudes may not uniquely result from changes in local precipitation associated with the amount effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fibrous calcite veins with organic inclusions have been widely considered as indicators of oil and gas generation and migration under overpressure. Abundant fibrous calcite veins containing organic-bearing inclusions occur in faulted Lower Paleozoic through Triassic hydrocarbon source rocks in the Dabashan Foreland Belt (DBF). d13CPDB and d18OPDB values of the fibrous calcite range from - 4.8 to -1.9 to per mil and - 12.8 to - 8.4 per mil respectively, which is lighter than that of associated carbonate host rocks ranging from - 1.7 to + 3.1 per mil and - 8.7 to - 4.5 per mil. A linear relationship between d13CPDB and d18OPDB indicates that the calcite veins were precipitated from a mixture of basinal and surface fluids. The fibrous calcite contains a variety of inclusions, such as solid bitumen, methane bearing all-liquid inclusions, and vapor-liquid aqueous inclusions. Homogenization temperatures of aqueous inclusions range from 140 to 196° with an average of 179°. Salinities of aqueous inclusions average 9.7 wt% NaCl. Independent temperatures from bitumen reflectance and inclusion phase relationships of aqueous and methane inclusions were used to determine fluid pressures. Results indicate high pressures, elevated above typical lithostatic confining pressure, from 150 to 200 MPa. The elevated salinity and high temperature and pressure conditions of the fibrous calcite veins argue against an origin solely from burial overpressure resulting from clay transformation and dehydration reactions. Instead fluid inclusion P-T data and geochemistry results and regional geology indicate abnormally high pressures during fluid migration. These findings indicate that tectonic stress generated fracture and fault fluid pathways and caused migration of organic bearing fluids from the DBF during the Yanshan orogeny.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magnesium isotope composition of diagenetic dolomites and their adjacent pore fluids were studied in a 250 m thick sedimentary section drilled into the Peru Margin during Ocean Drilling Program (ODP) Leg 201 (Site 1230) and Leg 112 (Site 685). Previous studies revealed the presence of two types of dolomite: type I dolomite forms at ~ 6 m below seafloor (mbsf) due to an increase in alkalinity associated with anaerobic methane oxidation, and type II dolomite forms at focused sites below ~ 230 mbsf due to episodic inflow of deep-sourced fluids into an intense methanogenesis zone. The pore fluid delta 26Mg composition becomes progressively enriched in 26Mg with depth from values similar to seawater (i.e. -0.8 per mil, relative to DSM3 Mg reference material) in the top few meters below seafloor (mbsf) to 0.8 ± 0.2 per mil within the sediments located below 100 mbsf. Type I dolomites have a delta 26Mg of -3.5 per mil, and exhibit apparent dolomite-pore fluid fractionation factors of about -2.6 per mil consistent with previous studies of dolomite precipitation from seawater. In contrast, type II dolomites have delta 26Mg values ranging from -2.5 to -3.0 per mil and are up to -3.6 per mil lighter than the modern pore fluid Mg isotope composition. The enrichment of pore fluids in 26Mg and depletion in total Mg concentration below ~ 200 mbsf is likely the result of Mg isotope fractionation during dolomite formation, The 26Mg enrichment of pore fluids in the upper ~ 200 mbsf of the sediment sequence can be attributed to desorption of Mg from clay mineral surfaces. The obtained results indicate that Mg isotopes recorded in the diagenetic carbonate record can distinguish near surface versus deep formed dolomite demonstrating their usefulness as a paleo-diagenetic proxy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the first study of Tl isotopes in early diagenetic pyrite. Measurements from two sections deposited during the Toarcian Ocean Anoxic Event (T-OAE, ~183 Ma) are compared with data from Late Neogene (<10 Ma) pyrite samples from ODP legs 165 and 167 that were deposited in relatively oxic marine environments. The Tl isotope compositions of Late Neogene pyrites are all significantly heavier than seawater, which most likely indicates that Tl in diagenetic pyrite is partially sourced from ferromanganese oxy-hydroxides that are known to display relatively heavy Tl isotope signatures. One of the T-OAE sections from Peniche in Portugal displays pyrite thallium isotope compositions indistinguishable from Late Neogene samples, whereas samples from Yorkshire in the UK are depleted in the heavy isotope of Tl. These lighter compositions are best explained by the lack of ferromanganese precipitation at the sediment-water interface due to the sulfidic (euxinic) conditions thought to be prevalent in the Cleveland Basin where the Yorkshire section was deposited. The heavier signatures in the Peniche samples appear to result from an oxic water column that enabled precipitation of ferromanganese oxy-hydroxides at the sediment-water interface. The Tl isotope profile from Yorkshire is also compared with previously published molybdenum isotope ratios determined on the same sedimentary succession. There is a suggestion of an anti-correlation between these two isotope systems, which is consistent with the expected isotope shifts that occur in seawater when marine oxic (ferromanganese minerals) fluxes fluctuate. The results outlined here represent the first evidence that Tl isotopes in early diagenetic pyrite have potential to reveal variations in past ocean oxygenation on a local scale and potentially also for global oceans. However, much more information about Tl isotopes in different marine environments, especially in anoxic/euxinic basins, is needed before Tl isotopes can be confidently utilized as a paleo-redox tracer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analysed Mg/Ca, Sr/Ca and Ca isotope ratios of benthonic foraminifers from sediment core tops retrieved during several research cruises in the Atlantic Ocean, in order to improve the understanding of isotope fractionation and element partitioning resulting from biomineralisation processes and changes in ambient conditions. Species include foraminifers secreting tests composed of hyaline low magnesium calcite, porcelaneous high magnesium calcite as well as aragonite. Our results demonstrate systematic isotope fractionation and element partitioning patterns specific for these foraminiferal groups. Calcium isotope fractionation is similar in porcelaneous and hyaline calcite tests and both groups demonstrate the previously described anomaly with enrichment of heavy isotopes around 3 - 4 °C (Gussone and Filipsson, 2010). Calcium isotope ratios of the aragonitic species Hoeglundina elegans, on the other hand, are about 0.4 per mil lighter compared to the calcitic species, which is in general agreement with stronger fractionation in inorganic aragonite compared to calcite. However, the low and strongly variable Sr content suggests additional processes during test formation, and we propose that transmembrane ion transport or a precursor phase to aragonite may be involved. Porcelaneous tests, composed of high Mg calcite, incorporate higher amounts of Sr compared to hyaline low Mg calcite, in agreement with inorganic calcite systematics, but also porcelaneous tests with reduced Mg/Ca show high Sr/Ca. While calcium isotopes, Sr/Ca and Mg/Ca in benthonic foraminifers primarily appear to fractionate and partition with a dominant inorganic control, d44/40Ca temperature and growth rate dependencies of benthonic foraminifer tests favour a dominant contribution of light Ca by transmembrane transport relative to unfractionated seawater Ca to the calcifying fluid, thus controlling the formation of foraminiferal d44/40Ca and Sr/Ca proxy signals.