936 resultados para Lexical error
Resumo:
The aim of this paper was to accurately estimate the local truncation error of partial differential equations, that are numerically solved using a finite difference or finite volume approach on structured and unstructured meshes. In this work, we approximated the local truncation error using the @t-estimation procedure, which aims to compare the residuals on a sequence of grids with different spacing. First, we focused the analysis on one-dimensional scalar linear and non-linear test cases to examine the accuracy of the estimation of the truncation error for both finite difference and finite volume approaches on different grid topologies. Then, we extended the analysis to two-dimensional problems: first on linear and non-linear scalar equations and finally on the Euler equations. We demonstrated that this approach yields a highly accurate estimation of the truncation error if some conditions are fulfilled. These conditions are related to the accuracy of the restriction operators, the choice of the boundary conditions, the distortion of the grids and the magnitude of the iteration error.
Resumo:
We analyze the effect of packet losses in video sequences and propose a lightweight Unequal Error Protection strategy which, by choosing which packet is discarded, reduces strongly the Mean Square Error of the received sequence
Resumo:
We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes.
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
This paper proposes a diagnosis algorithm for locating a certain kind of errors in logic programs: variable binding errors that result in abstract symptoms during compile-time checking of assertions based on abstract interpretation. The diagnoser analyzes the graph generated by the abstract interpreter, which is a provably safe approximation of the program semantics. The proposed algorithm traverses this graph to find the point where the actual error originates (a reason of the symptom), leading to the point the error has been reported (the symptom). The procedure is fully automatic, not requiring any interaction with the user. A prototype diagnoser has been implemented and preliminary results are encouraging.
Resumo:
Lexica and terminology databases play a vital role in many NLP applications, but currently most such resources are published in application-specific formats, or with custom access interfaces, leading to the problem that much of this data is in ‘‘data silos’’ and hence difficult to access. The Semantic Web and in particular the Linked Data initiative provide effective solutions to this problem, as well as possibilities for data reuse by inter-lexicon linking, and incorporation of data categories by dereferencable URIs. The Semantic Web focuses on the use of ontologies to describe semantics on the Web, but currently there is no standard for providing complex lexical information for such ontologies and for describing the relationship between the lexicon and the ontology. We present our model, lemon, which aims to address these gaps
Resumo:
Desarrollos recientes para encajar dentro de un marco variacional la llamada Formulación Libre sugieren la posibilidad de introducir un nuevo tipo de estimador de error para cálculos por elementos finitos. Este estimador se basa en una diferencia entre ciertos funcionales multicampo, que toman el mismo valor para la solución exacta del problema. En el presente articulo, dividido en dos partes, se introduce la formulación del estimador para problemas de elasticidad y de flexión de placas según las hipótesis clásicas de Kirchhoff. Se presentan también algunos ejeinplos para dar idea de los comportamientos numéricos observados.
Resumo:
Nowadays, Computational Fluid Dynamics (CFD) solvers are widely used within the industry to model fluid flow phenomenons. Several fluid flow model equations have been employed in the last decades to simulate and predict forces acting, for example, on different aircraft configurations. Computational time and accuracy are strongly dependent on the fluid flow model equation and the spatial dimension of the problem considered. While simple models based on perfect flows, like panel methods or potential flow models can be very fast to solve, they usually suffer from a poor accuracy in order to simulate real flows (transonic, viscous). On the other hand, more complex models such as the full Navier- Stokes equations provide high fidelity predictions but at a much higher computational cost. Thus, a good compromise between accuracy and computational time has to be fixed for engineering applications. A discretisation technique widely used within the industry is the so-called Finite Volume approach on unstructured meshes. This technique spatially discretises the flow motion equations onto a set of elements which form a mesh, a discrete representation of the continuous domain. Using this approach, for a given flow model equation, the accuracy and computational time mainly depend on the distribution of nodes forming the mesh. Therefore, a good compromise between accuracy and computational time might be obtained by carefully defining the mesh. However, defining an optimal mesh for complex flows and geometries requires a very high level expertize in fluid mechanics and numerical analysis, and in most cases a simple guess of regions of the computational domain which might affect the most the accuracy is impossible. Thus, it is desirable to have an automatized remeshing tool, which is more flexible with unstructured meshes than its structured counterpart. However, adaptive methods currently in use still have an opened question: how to efficiently drive the adaptation ? Pioneering sensors based on flow features generally suffer from a lack of reliability, so in the last decade more effort has been made in developing numerical error-based sensors, like for instance the adjoint-based adaptation sensors. While very efficient at adapting meshes for a given functional output, the latter method is very expensive as it requires to solve a dual set of equations and computes the sensor on an embedded mesh. Therefore, it would be desirable to develop a more affordable numerical error estimation method. The current work aims at estimating the truncation error, which arises when discretising a partial differential equation. These are the higher order terms neglected in the construction of the numerical scheme. The truncation error provides very useful information as it is strongly related to the flow model equation and its discretisation. On one hand, it is a very reliable measure of the quality of the mesh, therefore very useful in order to drive a mesh adaptation procedure. On the other hand, it is strongly linked to the flow model equation, so that a careful estimation actually gives information on how well a given equation is solved, which may be useful in the context of _ -extrapolation or zonal modelling. The following work is organized as follows: Chap. 1 contains a short review of mesh adaptation techniques as well as numerical error prediction. In the first section, Sec. 1.1, the basic refinement strategies are reviewed and the main contribution to structured and unstructured mesh adaptation are presented. Sec. 1.2 introduces the definitions of errors encountered when solving Computational Fluid Dynamics problems and reviews the most common approaches to predict them. Chap. 2 is devoted to the mathematical formulation of truncation error estimation in the context of finite volume methodology, as well as a complete verification procedure. Several features are studied, such as the influence of grid non-uniformities, non-linearity, boundary conditions and non-converged numerical solutions. This verification part has been submitted and accepted for publication in the Journal of Computational Physics. Chap. 3 presents a mesh adaptation algorithm based on truncation error estimates and compares the results to a feature-based and an adjoint-based sensor (in collaboration with Jorge Ponsín, INTA). Two- and three-dimensional cases relevant for validation in the aeronautical industry are considered. This part has been submitted and accepted in the AIAA Journal. An extension to Reynolds Averaged Navier- Stokes equations is also included, where _ -estimation-based mesh adaptation and _ -extrapolation are applied to viscous wing profiles. The latter has been submitted in the Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. Keywords: mesh adaptation, numerical error prediction, finite volume Hoy en día, la Dinámica de Fluidos Computacional (CFD) es ampliamente utilizada dentro de la industria para obtener información sobre fenómenos fluidos. La Dinámica de Fluidos Computacional considera distintas modelizaciones de las ecuaciones fluidas (Potencial, Euler, Navier-Stokes, etc) para simular y predecir las fuerzas que actúan, por ejemplo, sobre una configuración de aeronave. El tiempo de cálculo y la precisión en la solución depende en gran medida de los modelos utilizados, así como de la dimensión espacial del problema considerado. Mientras que modelos simples basados en flujos perfectos, como modelos de flujos potenciales, se pueden resolver rápidamente, por lo general aducen de una baja precisión a la hora de simular flujos reales (viscosos, transónicos, etc). Por otro lado, modelos más complejos tales como el conjunto de ecuaciones de Navier-Stokes proporcionan predicciones de alta fidelidad, a expensas de un coste computacional mucho más elevado. Por lo tanto, en términos de aplicaciones de ingeniería se debe fijar un buen compromiso entre precisión y tiempo de cálculo. Una técnica de discretización ampliamente utilizada en la industria es el método de los Volúmenes Finitos en mallas no estructuradas. Esta técnica discretiza espacialmente las ecuaciones del movimiento del flujo sobre un conjunto de elementos que forman una malla, una representación discreta del dominio continuo. Utilizando este enfoque, para una ecuación de flujo dado, la precisión y el tiempo computacional dependen principalmente de la distribución de los nodos que forman la malla. Por consiguiente, un buen compromiso entre precisión y tiempo de cálculo se podría obtener definiendo cuidadosamente la malla, concentrando sus elementos en aquellas zonas donde sea estrictamente necesario. Sin embargo, la definición de una malla óptima para corrientes y geometrías complejas requiere un nivel muy alto de experiencia en la mecánica de fluidos y el análisis numérico, así como un conocimiento previo de la solución. Aspecto que en la mayoría de los casos no está disponible. Por tanto, es deseable tener una herramienta que permita adaptar los elementos de malla de forma automática, acorde a la solución fluida (remallado). Esta herramienta es generalmente más flexible en mallas no estructuradas que con su homóloga estructurada. No obstante, los métodos de adaptación actualmente en uso todavía dejan una pregunta abierta: cómo conducir de manera eficiente la adaptación. Sensores pioneros basados en las características del flujo en general, adolecen de una falta de fiabilidad, por lo que en la última década se han realizado grandes esfuerzos en el desarrollo numérico de sensores basados en el error, como por ejemplo los sensores basados en el adjunto. A pesar de ser muy eficientes en la adaptación de mallas para un determinado funcional, este último método resulta muy costoso, pues requiere resolver un doble conjunto de ecuaciones: la solución y su adjunta. Por tanto, es deseable desarrollar un método numérico de estimación de error más asequible. El presente trabajo tiene como objetivo estimar el error local de truncación, que aparece cuando se discretiza una ecuación en derivadas parciales. Estos son los términos de orden superior olvidados en la construcción del esquema numérico. El error de truncación proporciona una información muy útil sobre la solución: es una medida muy fiable de la calidad de la malla, obteniendo información que permite llevar a cabo un procedimiento de adaptación de malla. Está fuertemente relacionado al modelo matemático fluido, de modo que una estimación precisa garantiza la idoneidad de dicho modelo en un campo fluido, lo que puede ser útil en el contexto de modelado zonal. Por último, permite mejorar la precisión de la solución resolviendo un nuevo sistema donde el error local actúa como término fuente (_ -extrapolación). El presenta trabajo se organiza de la siguiente manera: Cap. 1 contiene una breve reseña de las técnicas de adaptación de malla, así como de los métodos de predicción de los errores numéricos. En la primera sección, Sec. 1.1, se examinan las estrategias básicas de refinamiento y se presenta la principal contribución a la adaptación de malla estructurada y no estructurada. Sec 1.2 introduce las definiciones de los errores encontrados en la resolución de problemas de Dinámica Computacional de Fluidos y se examinan los enfoques más comunes para predecirlos. Cap. 2 está dedicado a la formulación matemática de la estimación del error de truncación en el contexto de la metodología de Volúmenes Finitos, así como a un procedimiento de verificación completo. Se estudian varias características que influyen en su estimación: la influencia de la falta de uniformidad de la malla, el efecto de las no linealidades del modelo matemático, diferentes condiciones de contorno y soluciones numéricas no convergidas. Esta parte de verificación ha sido presentada y aceptada para su publicación en el Journal of Computational Physics. Cap. 3 presenta un algoritmo de adaptación de malla basado en la estimación del error de truncación y compara los resultados con sensores de featured-based y adjointbased (en colaboración con Jorge Ponsín del INTA). Se consideran casos en dos y tres dimensiones, relevantes para la validación en la industria aeronáutica. Este trabajo ha sido presentado y aceptado en el AIAA Journal. También se incluye una extensión de estos métodos a las ecuaciones RANS (Reynolds Average Navier- Stokes), en donde adaptación de malla basada en _ y _ -extrapolación son aplicados a perfiles con viscosidad de alas. Este último trabajo se ha presentado en los Actas de la Institución de Ingenieros Mecánicos, Parte G: Journal of Aerospace Engineering. Palabras clave: adaptación de malla, predicción del error numérico, volúmenes finitos
Resumo:
Mesh adaptation based on error estimation has become a key technique to improve th eaccuracy o fcomputational-fluid-dynamics computations. The adjoint-based approach for error estimation is one of the most promising techniques for computational-fluid-dynamics applications. Nevertheless, the level of implementation of this technique in the aeronautical industrial environment is still low because it is a computationally expensive method. In the present investigation, a new mesh refinement method based on estimation of truncation error is presented in the context of finite-volume discretization. The estimation method uses auxiliary coarser meshes to estimate the local truncation error, which can be used for driving an adaptation algorithm. The method is demonstrated in the context of two-dimensional NACA0012 and three-dimensional ONERA M6 wing inviscid flows, and the results are compared against the adjoint-based approach and physical sensors based on features of the flow field.
Resumo:
Desarrollos recientes para encajar dentro de un marco variacional la llamada Formulación Libre sugieren la posibilidad de introducir un nuevo tipo de estimador de error para cálculos por elementos finitos. Este estimador se basa en una diferencia entre ciertos funcionales multicampo, que toman el mismo valor para la solución exacta del problema. En el presente artículo, dividido en dos partes, se introduce la formulación del estimador para problemas de elasticidad y de flexión de placas según las hipótesis clásicas de Kirchhoff. Se presentan también algunos ejemplos para dar idea de los comportamientos numéricos observados.