952 resultados para Lente intraocular multifocal
Resumo:
PURPOSE: To evaluate the early effects of intravitreal triamcinolone acetonide (TA) on cystoid macular edema associated with retinal vein occlusion and diabetic retinopathy. DESIGN: Prospective, interventional, small case series. PARTICIPANTS: Four patients with cystoid macular edema resulting from retinal vein occlusion or diabetic retinopathy of more than 4 months' duration and evaluated as suitable for treatment with intravitreous injection of TA. METHODS: After ophthalmic examination, including visual acuity assessment, intraocular pressure (IOP) measurement, and optical coherence tomography (OCT) analysis, the patients received a single intravitreal injection of 4 mg TA. After the injection, consecutive visual acuity assessment, IOP measurement, and OCT analysis were performed after 1 hour, 6 hours, 1 week, and 2 weeks. MAIN OUTCOME MEASURE: Optical coherence tomography assessment of macular thickness. RESULTS: Macular thickness and edema initially were reduced as early as 1 hour after TA injection. A further continuous decrease was observed during the 2 weeks after treatment. CONCLUSIONS: This rapid effect of intravitreal TA is interpreted to indicate that nongenomic effects on retinal or retinal pigment epithelial cell membranes, or both, may be responsible for this phenomenon. Identifications of these mechanisms may help design alternative, more specific drugs for the treatment of macular edema.
Resumo:
Retinal diseases are nowadays the most common causes of vision threatening in developed countries. Therapeutic advances in this field are hindered by the difficulty to deliver drugs to the posterior segment of the eye. Due to anatomical barriers, the ocular biodisponibility of systemically administered drugs remains poor, and topical instillation is not adequate to achieve therapeutic concentrations of drugs in the back of the eye. Ocular drug delivery has thus become one of the main challenges of modern ophthalmology. A multidisciplinary research is being conducted worldwide including pharmacology, biomaterials, ophthalmology, pharmaceutics, and biology. New promising fields have been developed such as implantable or injectable slow release intravitreal devices and degradable polymers, dispersed polymeric systems for intraocular drug delivery, and transscleral delivery devices such as iontophoresis, osmotic pumps or intra-scleraly implantable materials. The first clinical applications emerging from this research are now taking place, opening new avenues for the treatment of retinal diseases.
Resumo:
The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.
Resumo:
The purpose of this study was to evaluate the intraocular pressure (IOP)-lowering effect of modified goniopuncture with the 532-nm Nd : YAG selective laser trabeculoplasty (SLT) laser on eyes after deep sclerectomy with collagen implant (DSCI). This was an interventional cased series. The effects of modified goniopuncture on eyes with insufficient IOP-lowering after DSCI were observed. Goniopuncture was performed using a Q-switched, frequency-doubled 532-nm Nd : YAG laser (SLT-goniopuncture, SLT-G). Outcome measures were amount of IOP-lowering and rapidity of decrease after laser intervention. In all, 10 eyes of 10 patients with a mean age of 71.0±7.7 (SD) years were treated with SLT-G. The mean time of SLT-G after DSCI procedure was 7.1±10.9 months. SLT-G decreased IOP from an average of 16.1±3.4 mm Hg to 14.2±2.8 mm Hg (after 15 min), 13.6±3.9 mm Hg (at 1 day), 12.5±4.1 mm Hg (at 1 month), and 12.6±2.5 (at 6 months) (P<0.0125). There were no complications related to the intervention. Patients in this series achieved an average 22.5% of IOP reduction after SLT-G. The use of the SLT laser appears to be an effective and safe alternative to the traditional Nd : YAG laser for goniopuncture in eyes after DSCI, with potential advantages related to non-perforation of trabeculo-descemet's membrane (TDM).
Resumo:
PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.
Resumo:
Cataract surgery is a common ocular surgical procedure consisting in the implantation of an artificial intraocular lens (IOL) to replace the ageing, dystrophic or damaged natural one. The management of postoperative ocular inflammation is a major challenge especially in the context of pre-existing uveitis. The association of the implanted IOL with a drug delivery system (DDS) allows the prolonged intraocular release of anti-inflammatory agents after surgery. Thus IOL-DDS represents an "all in one" strategy that simultaneously addresses both cataract and inflammation issues. Polymeric DDS loaded with two model anti-inflammatory drugs (triamcinolone acetonide (TA) and cyclosporine A (CsA)) were manufactured in a novel way and tested regarding their efficiency for the management of intraocular inflammation during the 3 months following surgery. The study involved an experimentally induced uveitis in rabbits. Experimental results showed that medicated DDS efficiently reduced ocular inflammation (decrease of protein concentration in aqueous humour, inflammatory cells in aqueous humour and clinical score). Additionally, more than 60% of the loading dose remained in the DDS at the end of the experiment, suggesting that the system could potentially cover longer inflammatory episodes. Thus, IOL-DDS were demonstrated to inhibit intraocular inflammation for at least 3 months after cataract surgery, representing a potential novel approach to cataract surgery in eyes with pre-existing uveitis.
Resumo:
The purpose of this study was to evaluate the efficacy of a Coulomb Controlled Iontophoresis system (CCI) in the local delivery of corticosteroids for the treatment of uveitis. The therapeutic efficacy of Dexamethasone (Dex) administered by CCI was compared to systemic injection and to topical application with the iontophoresis apparatus in the absence of electrical current. The evaluation was done in the treatment of the endotoxin-induced uveitis (EIU) model, and in the effect on TNF gene expression in the iris/ciliary body as well as in the retina and on TNF levels in aqueous humor and vitreous. Dex was administered either at the time of LPS injection or 5 hours later. For iontophoresis, we used a 1 ml reservoir-electrode covering the cornea, the limbus, and the first millimeter of the sclera. The applied electrical current was of 400 microA during four minutes with a total surface charge of 0.4 C cm-2. EIU was evaluated by clinical examination, by counts of intraocular inflammatory cells on histological sections, and by measuring the protein levels in the aqueous humor and in the vitreous. The TNF-alpha gene expression in the iris and ciliary body, and in the retina was evaluated by RT-PCR. The systemic effect of Dex delivered by CCI was evaluated on the level of serum TNF-alpha in EIU. Our results demonstrated that local administration of Dex by CCI inhibited anterior and posterior signs of intraocular inflammation as effectively as systemic administration, with no effect on systemic level of TNF. In the anterior and posterior segments of the eye, the protein exudation. TNF levels and the cellular infiltration were inhibited. The TNF-alpha gene expression was inhibited in the anterior as well as the posterior segment of the eye. No clinical nor histological damage were caused by the CCI apparatus. In conclusion, CCI administration of Dex allows for a therapeutic effect on the posterior as well as the anterior segment of the eye, and may present a viable alternative to systemic administration of glucocorticoids in severe ocular inflammations.
Resumo:
OBJECTIVE: Assess the incidence of intraocular inflammation (uveitis) and ocular complications in children with various types of JIA in a single cohort of patients. PATIENTS: Included are 172 children (35 boys and 137 girls) diagnosed with JIA. All underwent thorough initial ophthalmologic examination and were followed for a minimum of 3 years. RESULTS: Of 172 children with JIA, 152 (88.4%) presented with arthritis. Uveitis was detected in 14 of the152 children (9.2%) during the first ophthalmic examination. In 17 additional patients of this group (11.2%), uveitis developed during the follow up period of up to 15 years. Twenty children out of the total of 172 (11.6%) presented initially with uveitis. In children developing uveitis before or along with arthritic manifestations, the ocular disease was chronic with a high rate of secondary complications (band keratopathy, glaucoma, posterior synechiae and cataract). In all affected eyes the initial ocular inflammation was typically confined to the anterior segment. On longer follow up however, most children developed binocular disease and posterior segment involvement. Dense cataract and amblyopia were the major cause of severe visual disabilities. CONCLUSION: Pauciarticular JIA is associated with intraocular inflammation (uveitis) early during the arthritic disease course. The ocular disease course is unpredictable. Therefore education of parents regarding its signs and symptoms is of utmost importance. To preserve functional vision, secondary ocular complications and amblyopia should be avoided.
Resumo:
Complex cortical malformations associated with mutations in tubulin genes are commonly referred to as "Tubulinopathies". To further characterize the mutation frequency and phenotypes associated with tubulin mutations, we studied a cohort of 60 foetal cases. Twenty-six tubulin mutations were identified, of which TUBA1A mutations were the most prevalent (19 cases), followed by TUBB2B (6 cases) and TUBB3 (one case). Three subtypes clearly emerged. The most frequent (n = 13) was microlissencephaly with corpus callosum agenesis, severely hypoplastic brainstem and cerebellum. The cortical plate was either absent (6/13), with a 2-3 layered pattern (5/13) or less frequently thickened (2/13), often associated with neuroglial overmigration (4/13). All cases had voluminous germinal zones and ganglionic eminences. The second subtype was lissencephaly (n = 7), either classical (4/7) or associated with cerebellar hypoplasia (3/7) with corpus callosum agenesis (6/7). All foetuses with lissencephaly and cerebellar hypoplasia carried distinct TUBA1A mutations, while those with classical lissencephaly harbored recurrent mutations in TUBA1A (3 cases) or TUBB2B (1 case). The third group was polymicrogyria-like cortical dysplasia (n = 6), consisting of asymmetric multifocal or generalized polymicrogyria with inconstant corpus callosum agenesis (4/6) and hypoplastic brainstem and cerebellum (3/6). Polymicrogyria was either unlayered or 4-layered with neuronal heterotopias (5/6) and occasional focal neuroglial overmigration (2/6). Three had TUBA1A mutations and 3 TUBB2B mutations. Foetal TUBA1A tubulinopathies most often consist in microlissencephaly or classical lissencephaly with corpus callosum agenesis, but polymicrogyria may also occur. Conversely, TUBB2B mutations are responsible for either polymicrogyria (4/6) or microlissencephaly (2/6).
Resumo:
OBJECTIVE: To evaluate the safety and efficacy of 2 doses of dexamethasone intravitreal implant (DEX implant) for treatment of noninfectious intermediate or posterior uveitis. METHODS: In this 26-week trial, eyes with noninfectious intermediate or posterior uveitis were randomized to a single treatment with a 0.7-mg DEX implant (n = 77), 0.35-mg DEX implant (n = 76), or sham procedure (n = 76). MAIN OUTCOME MEASURE: The main outcome measure was the proportion of eyes with a vitreous haze score of 0 at week 8. RESULTS: The proportion of eyes with a vitreous haze score of 0 at week 8 was 47% with the 0.7-mg DEX implant, 36% with the 0.35-mg DEX implant, and 12% with the sham (P < .001); this benefit persisted through week 26. A gain of 15 or more letters from baseline best-corrected visual acuity was seen in significantly more eyes in the DEX implant groups than the sham group at all study visits. The percentage of eyes with intraocular pressure of 25 mm Hg or more peaked at 7.1% for the 0.7-mg DEX implant, 8.7% for the 0.35-mg DEX implant, and 4.2% for the sham (P > .05 at any visit). The incidence of cataract reported in the phakic eyes was 9 of 62 (15%) with the 0.7-mg DEX implant, 6 of 51 (12%) with the 0.35-mg DEX implant, and 4 of 55 (7%) with the sham (P > .05). CONCLUSIONS: In patients with noninfectious intermediate or posterior uveitis, a single DEX implant significantly improved intraocular inflammation and visual acuity persisting for 6 months. Application to Clinical Practice Dexamethasone intravitreal implant may be used safely and effectively for treatment of intermediate and posterior uveitis. Trial Registration clinicaltrials.gov Identifier: NCT00333814.
Resumo:
BACKGROUND: The A3243G point mutation in mitochondrial DNA (mtDNA) is associated with MELAS (mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes) and MIDD syndromes (maternally inherited diabetes and deafness). Both MELAS and MIDD patients can present with visual symptoms due to a retinopathy, sometimes before the genetic diagnosis is made. CASE PRESENTATION: Patient 1: 46 year-old woman with diabetes mellitus and hearing loss was referred for an unspecified maculopathy detected during screening evaluation for diabetic retinopathy. Visual acuity was 20/20 in both eyes. Fundus examination showed bilateral macular and peripapillary hyperpigmented/depigmented areas.Patient 2: 45 year-old woman was referred for recent vision loss in her left eye. History was remarkable for chronic fatigue, migraine and diffuse muscular pain. Visual acuity was 20/20 in her right eye and 20/30 in her left eye. Fundus exhibited several nummular perifoveal islands of retinal pigment epithelium atrophy and adjacent pale deposits in both eyes.Retinal anatomy was investigated with autofluorescence, retinal angiography and optical coherence tomography. Retinal function was assessed with automated static perimetry, full-field and multifocal electroretinography and electro-oculography. Genetic testing of mtDNA identified a point mutation at the locus 3243. CONCLUSION: Observation of RPE abnormalities in the context of suggestive systemic findings should prompt mtDNA testing.
Resumo:
Introduction: Natalizumab, a monoclonal antibody binding to the alpha4 integrins, is efficient in preventing relapses and progression of disability in multiple sclerosis (MS) patients. However, a total of seven MS patients treated with natalizumab suffered from progressive multifocal leukoencephalopathy (PML), on a total of 53?000 patients (data of March 6, 2009) treated with this drug. PML is a disease affecting immunosuppressed people, which is caused by the polyomavirus JC (JCV). This virus produces a lytic infection of the oligodendrocytes. Yet, natalizumab cannot be considered as a classical immunosuppressant, such as suggested by the fact that no increased incidence of other opportunistic infections was reported with this drug. It has been postulated that, by closing the blood-brain, natalizumab might prevent JCV-specific CD8_ T cells to reach the CNS and perform immune surveillance. Alternatively, it has been suggested that this drug acts by releasing JCV from the bone marrow, one of its site of latency. In this study, we address the question whether there is an increased activity of JCV in the blood of natalizumab-treated MS patients. Material and Methods: In this prospective longitudinal study, we are following a cohort of 24 MS patients receiving monthly injections of natalizumab. Blood and urine are drawn every one to three months, up to 12 months. As a control group, we follow 16 MS patients treated with IFN-beta. For this control group, there are two time-points: before and 1094 months after treatment onset. We are analysing the viral (JCV-, EBV- and CMV-) as well as the myelin- (MOG-, MOBP-) specific cellular immune responses using proliferation and ELISPOT (IFNgamma) assays. For JCV, we study the response against VP1, the major capsid protein. For JCV VP1, MOG and MOBP, we use 15-mer peptides overlapping by 10 amino acids, thus eliciting CD4_ as well as CD8_ T cell response. These peptides encompasse the whole sequence of the proteins. For EBV and CMV, we use pools of immunodominant 8- to 10-mer peptides eliciting CD8_ T cells. At the same time-points, using RTPCR, we determine the presence of JCV DNA coding for the VP1 protein in the PBMC, plasma, and urine. Results: At the time of writing this abstract, 16 patients have reached the 9-month (T9), and 11 the T12 time-point. We expect that by the ISNV meeting in June 2009, 18 and 14 patients will be at T9 and T12, respectively. Virological and immunological results will be presented. 9th International Symposium on NeuroVirology 2_6 June 2009 39 J Neurovirol Downloaded from informahealthcare.com by Cantonale et Universitaire on 06/25/10 For personal use only. Conclusions: This ongoing longitudinal prospective study should tell us whether there is an enhanced JCV activity in the peripheral blood of patients on natalizumab. This work is supported by the FNS (PP00B-106716), the Swiss MS Society and a research grant from Biogen Dompe.
Resumo:
Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.
Resumo:
PURPOSE: The aim of this study was to investigate the effect of a single intravitreal (i.v.t.) injection of vasoactive intestinal peptide (VIP) loaded in rhodamine-conjugated liposomes (VIP-Rh-Lip) on experimental autoimmune uveoretinitis (EAU). METHODS: An i.v.t. injection of VIP-Rh-Lip, saline, VIP, or empty-(E)-Rh-Lip was performed simultaneously, either 6 or 12 days after footpad immunization with retinal S-antigen in Lewis rats. Clinical and histologic scores were determined. Immunohistochemistry and cytokine quantification by multiplex enzyme-linked immunosorbent assay were performed in ocular tissues. Systemic immune response was determined at day 20 postimmunization by measuring proliferation and cytokine secretion of cells from inguinal lymph nodes (ILNs) draining the immunization site, specific delayed-type hypersensitivity (DTH), and the serum concentration of cytokines. Ocular and systemic biodistribution of VIP-Rh-Lip was studied in normal and EAU rats by immunofluorescence. RESULTS: The i.v.t. injection of VIP-Rh-Lip performed during the afferent, but not the efferent, phase of the disease reduced clinical EAU and protected against retinal damage. No effect was observed after saline, E-Rh-Lip, or VIP injection. VIP-Rh-Lip and VIP were detected in intraocular macrophages and in lymphoid organs. In VIP-Rh-Lip-treated eyes, macrophages expressed transforming growth factor-beta2, low levels of major histocompatibility complex class II, and nitric oxide synthase-2. T-cells showed activated caspase-3 with the preservation of photoreceptors. Intraocular levels of interleukin (IL)-2, interferon-gamma (IFN-gamma), IL-17, IL-4, GRO/KC, and CCL5 were reduced with increased IL-13. At the systemic level, treatment reduced retinal soluble autoantigen lymphocyte proliferation, decreased IL-2, and increased IL-10 in ILN cells, and diminished specific DTH and serum concentration of IL-12 and IFN-gamma. CONCLUSIONS: An i.v.t. injection of VIP-Rh-Lip, performed during the afferent stage of immune response, reduced EAU pathology through the immunomodulation of intraocular macrophages and deviant stimulation of T-cells in ILN. Thus, the encapsulation of VIP within liposomes appears as an effective strategy to deliver VIP into the eye and is an efficient means of the prevention of EAU severity.
Resumo:
Systemic administration of cyclosporine A (CsA) is commonly used in the treatment of local ophthalmic conditions involving cytokines, such as corneal graft rejection, autoimmune uveitis and dry eye syndrome. Local administration is expected to avoid the various side effects associated with systemic delivery. However, the currently available systems using oils to deliver CsA topically are poorly tolerated and provide a low bioavailability. These difficulties may be overcome through formulations aimed at improving CsA water solubility (e.g. cyclodextrins), or those designed to facilitate tissue drug penetration using penetration enhancers. The use of colloidal carriers (micelles, emulsions, liposomes and nanoparticles) as well as the approach using hydrosoluble prodrugs of CsA have shown promising results. Solid devices such as shields and particles of collagen have been investigated to enhance retention time on the eye surface. Some of these topical formulations have shown efficacy in the treatment of extraocular diseases but were inefficient at reaching intraocular targets. Microspheres, implants and liposomes have been developed to be directly administered subconjunctivally or intravitreally in order to enhance CsA concentration in the vitreous. Although progress has been made, there is still room for improvement in CsA ocular application, as none of these formulations is ideal.