965 resultados para Lellurile glasses
Resumo:
New glasses have been prepared in the oxifluoride mixed system TeO2-PbF2-CdF2. Starting from pure TeO2 the addition of the fluorides leads to a decrease in the glasses characteristic temperatures. Also from Raman scattering results a structural evolution was observed where the number of structural units described as [TeO3] trigonal pyramids and [TeO3+1] polyhedra increases at the expense of the [TeO4] trigonal bipyramids supposed to exist in the TeO2, rich samples. Transparent glass ceramics were obtained from the glass with composition 80TeO(2)-10PbF(2)-10CdF(2), (mol%) with the PbTe3O7 crystalline phase being identified by X-ray diffraction and EXAFS measurements performed at the Te K, Cd K and Pb L-III edges. Also from Exafs measurements it is proposed that cadmium ions are preferentially surrounded by oxygen atoms although they were in a fluoride anion environment in the starting material. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.
Resumo:
Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Upconversion luminescence and thermal effects in Pr3+/Yb3+- and Er3+/Yb3+-codoped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses excited by CW infrared radiation at 1.064 mum is reported. Generation of intense green and red fluorescence emission in Er3+/Yb3+-codoped samples and appreciable upconversion luminescence in the wavelength region of 450-680 nm in Pr3+/Yb3+-codoped samples is observed. Temperature-induced enhancement of X12 in the upconversion efficiency in Er3+/Yb3+- and X10 in the Pr3+/Yb3+-doped samples is demonstrated. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The vitrification and devitrification features of lead fluoride are investigated by means of molecular dynamic simulations. The influence of heating rate on the devitrification temperature as well as the dependence of the glass properties on its thermal history, i.e., the cooling rate employed, is identified. As expected, different glasses are obtained when the cooling rates differ. Diffusion coefficient analysis during heating of glass and crystal, indicates that the presence of defects on the glassy matrix favors the transition processes from the ionic to a superionic state, with high mobility of fluorine atoms, responsible for the high anionic conduction of lead fluoride. Nonisothermal and isothermal devitrification processes are simulated in glasses obtained at different cooling rates and structural organizations occurring during the heat treatments are clearly observed. When a fast cooling rate is employed during the glass formation, the devitrification of a single crystal (limited by the cell dimensions) is observed, while the glass obtained with slower cooling rate, allowing relaxations and organization of various regions on the glass bulk during the cooling process, devitrifies in more than one crystalline plane. (C) 2004 American Institute of Physics.
Resumo:
Luminescent spectra of Eu3+-doped sol-gel glasses have been analyzed during the densification process and compared according to the presence or not of aluminum as a codoping ion. A transition temperature from hydrated to dehydroxyled environments has been found different for doped and codoped samples. However, only slight modifications have been displayed from luminescence measurements beyond this transition. To support the experimental analysis, molecular dynamics simulations have been performed to model the doped and codoped glass structures. Despite no evidence of rare earth clustering reduction due to aluminum has been found, the modeled structures have shown that the luminescent ions are mainly located in aluminum-rich domains. The synthesis of both experimental and numerical analyses has lead us to interpret the aluminum effect as responsible for differences in structure of the luminescent sites rather than for an effective dispersion of the rare earth ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Vitreous samples were prepared in the NaPO(3)-BaF(2)WO(3) ternary system with high WO(3) concentrations. These glasses exhibit a strong absorption in the visible due to the presence of reduced tungsten species and the use of oxidizing species is required. The couple Sb(2)O(3)/NaNO(3) was introduced in the composition and allowed to obtain transparent glasses. These oxidized samples were illuminated by visible laser radiation and showed an efficient volumetric photochromic effect. The photosensitive effect appeared as a dark spot throughout the entire volume of the glasses. The effect was investigated by several techniques such as, U-V-visible absorption, Raman and XANES at the L(1) and L(3) tungsten absorption edges. The results suggest a photoreduction of tungsten atoms without structural changes of the viteous network. Finally, the photochromic effect can be erased by thermal treatment at 200 degrees C for a few minutes. (C) 2007 Published by Elsevier B.V.
Resumo:
In this work the quantitative theoretical treatment for two beam mode mismatched thermal lens spectrometry is applied to investigate the thermo-optical properties of chalcohalide (chalcolgenides and halides mixture) glasses. For the three kinds of glass studied the thermal diffusivity varied between 2.5 and 2.7 x 10(-3) cm(2) s(-1). Using these results and supposing Dulong-Petit specific heats we estimated the thermal conductivity and temperature ratio of optical path length (ds/dT) and temperature coefficient of refractive index (dn/dT). All samples had positive ds/dT(similar to 3.3 x 10(-6) K-1) and negative dn/dT (similar to -26 x 10(-6) K-1). The difference between these parameters and the change of signal are consequences of the expansion coefficient (13 x 10(-6) K-1) and refractive index (n similar to 2.6) of chalcohalides. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Changes occurring in absorption coefficients when glasses in the SbPO4-WO3 binary system were irradiated by light, at the edge of the absorption band, were measured in real time. These glasses present good thermal and optical properties and photoinduced changes in the absorption coefficients are reversible by heat treatment around 150 degrees C. Subsequent recording/erasing cycles could be made without sample degradation. The sensitivity of the induced optical changes was studied for different wavelengths, light powers and energy of light dose exposures, and for different compositions of the glasses. The changes in the absorption coefficients of the glass samples were accompanied by a color change from yellow to blue, and were also characterized by visible spectroscopy. The color changes occurred through the entire volume of the glass (similar to 2 mm thickness) for the Ar-ion laser lines at the edge of the absorption band. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The top faces of float glass samples were exposed to vapors resulting from the decomposition of KNO3 at 565 degrees C for up to 32 h. X-ray dispersive spectra (EDS) show that K+ ions migrate into the glass. The K+ concentration profile was obtained and its diffusion coefficient was calculated by the Boltzmann-Matano technique. The mean diffusion coefficient was approximately 10 X 10(-11) cm(2) s(-1). It was observed that the refractive index and the Vickers hardness decrease with the depth (after the removal of successive layers), and their profiles were thus obtained. These profiles enabled the calculation of the diffusion coefficient of K+ through the Boltzmann-Matano technique, with mean results ranging between 6 x 10(-11) and 30 x 10(-11) cm(2) s(-1). (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We report on a metastable light-induced volume expansion in Ge25+xGa10-xS65 glasses under irradiation with band gap (UV) light, which can result in recording of relief gratings on their surface in the case of irradiation with two interfering beams. We propose a mechanism for the expansion, which is based on the light-induced change in the polarizability of secondary (van der Waals type) bonds and the effect of this change on primary (covalent type) bonds of the glass. The effect is suggested to be due to an interference of electrons, which belong to a chalcogen atom and participate in the formation of secondary and primary bonds, respectively. We suggest that a minimum point of the Lennard-Jones potential, which corresponds to the equilibrium position of a chalcogen atom is shifted in the course of irradiation to a larger interatomic distance. This shift causes a volume expansion and allows a diffusion of chalcogen atoms into the irradiated area. We show that light-induced polymerization of the glass network is an important attribute of the light-induced volume expansion.
Resumo:
In this work, we present an approach for neutron fluence measurements based on natural thorium thin films and natural uranium-doped glasses calibrated through natural uranium thin films to be used for dating with the Fission-Track Method (FTM). This neutron dosimetry approach allows the employment of FTM even when dating is carried out using low neutron themalization facilities. Besides, it makes possible the determination of the Th/U ratio of the mineral to be dated. Durango apatite which is often employed in FTM as an age standard was analyzed. This apatite presented a fairly high Th/U ratio, 29.9 +/- 1.7. Th fissions were 18%, 12% and 10% of the total for irradiations where thermal to fast neutron flux ratios were 2.4, 4.4 and 5,2, respectively. These results show that Th fission must be considered for this apatite, when not well-thermalized irradiation facilities are used. The ratio between spontaneous and induced track length, L(S)/L(1), close to 0.89, indicates a certain amount of rejuvenation of the age of Durango apatite. Therefore, its apparent age should be corrected, the application of a technique based on track-length measurements produced a corrected age of 29.7 +/- 1.1 Ma, consistent with the independent reference age of this apatite (31.4 +/- 0.5 Ma). This result represents a support for viability of the neutron dosimetry approach studied in this work for FTM.(C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The optical nonlinearity of tungstate fluorophosphate glasses, synthesized in the NaPO3-BaF2-WO3 system, was investigated through experiments based on the third-order susceptibility, chi((3)). Nonlinear (NL) refraction and NL absorption measurements in the picosecond regime were performed using the Z-scan technique at 532 nm. NL refractive index, n(2)proportional toRe chi((3)), ranging from 0.4x10(-14) cm(2)/W to 0.6x10(-14) cm(2)/W were determined. The two-photon absorption coefficient, alpha(2)proportional toIm chi((3)), for excitation at 532 nm, vary from 0.3 to 0.5 cm/GW. Light induced birefringence experiments performed in the femtosecond regime indicate that the response time of the nonlinearity at 800 nm is faster than 100 fs. The experiments show that chi((3)) is enhanced when the WO3 concentration increases and this behavior is attributed to the hyperpolarizabilities associated to W-O bonds. (C) 2004 American Institute of Physics.
Resumo:
Tin oxide nanoparticles prepared by an aqueous sol-gel method were deposited by dip-coating on fluorozirconate glass, ZBLAN (53%ZrF4-20%BaF2-4%LaF3-3%AlF3-20%NaF) to improve its resistance against wet corrosion. The aqueous leaching of uncoated and SnO2-coated fluorozirconate glass was studied by X-ray photoemission spectroscopy (XPS) and it was shown that even an ultra thin tin dioxide film provides good protection of the glass surface against the bulk propagation of the hydrolytic attack.
Resumo:
The surface corrosion process associated with the hydrolysis of fluorozirconate glass, ZBLAN (53ZrF(4), 20BaF(2), 20NaF, 4LaF(2), 3AlF(3)) was investigated using X-ray photoelectron spectroscopy (XPS), grazing-incidence small angle X-ray scattering (GISAXS), X-ray reflectivity (XRR) and scanning electron microscopy (SEM). After a short exposure period (25 min) of the glass surface to deionized water the XPS data indicate an increase of the oxygen content accompanied by a decrease of fluorine concentration. The analysis of the chemical bonding structure identified the predominant surface reaction products as zirconium hydroxyfluoride and oxyfluoride species. The second most abundant glass component, bariumfluoride, remains almost unaffected by oxygen, while sodium fluoride is completely removed from the attacked surface region. The detected structural and compositional changes are related to the selective dissolution of the glass components leading to the formation of a new surface phase. This process is accompanied by a visible surface roughening caused by reprecipitated species, observed by SEM. The modification of the glass surface is responsible for an increase of the GISAXS intensity. The scattering was attributed to nanovoids formed at the surface region of the glass with an average size of 2.4 +/- 0.05 nm. (C) 2004 Elsevier B.V. All rights reserved.