985 resultados para Left ventricular dysfunction
Resumo:
OBJECTIVE: The aim of this investigation was to improve the hemodynamics during venoarterial bypass by remote decompression of the left ventricle (LV). METHODS: Venoarterial bypass was established in 5 bovine experiments (69+/-10 kg) by the transjugular insertion of a self-expanding cannula (smartcanula) with return through a carotid artery. Cardiogenic shock was simulated with ventricular fibrillation induced by an external stimulator. Left ventricular decompression was achieved by switching to transfemoral drainage of the pulmonary artery (PA) with a long self-expanding cannula. RESULTS: Initial pump flow was 4.7+/-0.9 l/min and the aortic pressure accounted for 75+/-21 mmHg. After induction of ventricular fibrillation, the pump flow dropped after 11+/-8 min to 2.5+/-0.1 l/min. Transfemoral decompression increased the pump flow to 5.6+/-0.7 l/min, while the RV pressure decreased from 27+/-9 to 3+/-5 mmHg, the PA pressure decreased from 29+/-7 to 5+/-4 mmHg, the LV pressure decreased from 29+/-6 to 7+/-2 mmHg, and the aortic pressure increased from 31+/-3 to 47+/-11 mmHg. CONCLUSIONS: Remote drainage of the pulmonary artery during venoarterial bypass allows for effective decompression of the left ventricle and provides superior hemodynamics.
Resumo:
BACKGROUND: Both systolic and diastolic dysfunction have been observed in patients with anterolateral myocardial infarction. Diastolic dysfunction is related to disturbances in relaxation and diastolic filling. OBJECTIVE: To analyse cardiac rotation, regional shortening and diastolic relaxation in patients with anterolateral infarction. METHODS: Cardiac rotation and relaxation in controls and patients with chronic anterolateral infarction were assessed by myocardial tagging. Myocardial tagging is based on magnetic resonance imaging and allows us to label specific myocardial regions for imaging cardiac motion (rotation, translation and radial displacement). A rectangular grid was placed on the myocardium (basal, equatorial and apical short-axis plane) of each of 18 patients with chronic anterolateral infarction and 13 controls. Cardiac rotation, change in area and shortening of circumference were determined in each case. RESULTS: The left ventricle in controls performs a systolic wringing motion with a clockwise rotation at the base and a counterclockwise rotation at the apex when viewed from the apex. During relaxation a rotational motion in the opposite direction (namely untwisting) can be observed. In patients with anterolateral infarction, there is less systolic rotation at the apex and diastolic untwisting is delayed and prolonged in comparison with controls. In the presence of a left ventricular aneurysm (n = 4) apical rotation is completely lost. There is less shortening of circumference in infarcted and remote regions. CONCLUSIONS: The wringing motion of the myocardium might be an important mechanism involved in maintaining normal cardiac function with minimal expenditure of energy. This mechanism no longer operates in patients with left ventricular aneurysms and operates significantly less than normal in those with anterolateral hypokinaesia. Diastolic untwisting is significantly delayed and prolonged in patients with anterolateral infarction, which could explain the occurrence of diastolic dysfunction in these patients.
Resumo:
Chagas disease is a pleomorphic clinical entity that has several unique features. The aim of this study is to summarise some of the recent contributions from our research group to knowledge of the morbidity and prognostic factors in Chagas heart disease. A retrospective study suggested that ischaemic stroke associated with left ventricular (LV) apical thrombi is the first clinical manifestation of Chagas disease observed in a large proportion of patients. LV function and left atrial volume (LAV) are independent risk factors for ischaemic cerebrovascular events during follow-up of Chagas heart disease patients. Pulmonary congestion in Chagas-related dilated cardiomyopathy is common but usually mild. Although early right ventricular (RV) involvement has been described, we have shown by Doppler echocardiography that RV dysfunction is evident almost exclusively when it is associated with left ventricle dilatation and functional impairment. In addition, RV dysfunction is a powerful predictor of survival in patients with heart failure secondary to Chagas disease. We have also demonstrated that LAV provides incremental prognostic information independent of clinical data and conventional echocardiographic parameters that predict survival.
Resumo:
L'année 2007 a été marquée par la publication de plusieurs études internationales concernant directement le quotidien de l'interniste hospitalier. Un résumé de ces travaux ne saurait être qu'un extrait condensé et forcément subjectif d'une croissante et dynamique diversité. Au gré de leurs lectures, de leurs intérêts et de leurs interrogations, les chefs de clinique du Service de médecine interne vous proposent ainsi un parcours original revisitant les thèmes de l'insuffisance cardiaque, du diabète, de l'endocardite, de la BPCO ou de la qualité des soins. Cette variété de sujets illustre à la fois le vaste champ couvert par la médecine interne actuelle, ainsi que les nombreuses incertitudes liées à la pratique médicale moderne basée sur les preuves. In 2007, several international studies brought useful information for the daily work of internists in hospital settings. This summary is of course subjective but reflects the interests and questions of the chief residents of the Department of internal medicine who wrote this article like an original trip in medical literature. This trip will allow you to review some aspects of important fields such as heart failure, diabetes, endocarditis, COPD, and quality of care. Besides the growing diversity of the fields covered by internal medicine, these various topics underline also the uncertainty internists have to face in a practice directed towards evidence.
Resumo:
BACKGROUND: We sought to investigate the relationship between infarct and dyssynchrony post- myocardial infarct (MI), in a porcine model. Mechanical dyssynchrony post-MI is associated with left ventricular (LV) remodeling and increased mortality. METHODS: Cine, gadolinium-contrast, and tagged cardiovascular magnetic resonance (CMR) were performed pre-MI, 9 ± 2 days (early post-MI), and 33 ± 10 days (late post-MI) post-MI in 6 pigs to characterize cardiac morphology, location and extent of MI, and regional mechanics. LV mechanics were assessed by circumferential strain (eC). Electro-anatomic mapping (EAM) was performed within 24 hrs of CMR and prior to sacrifice. RESULTS: Mean infarct size was 21 ± 4% of LV volume with evidence of post-MI remodeling. Global eC significantly decreased post MI (-27 ± 1.6% vs. -18 ± 2.5% (early) and -17 ± 2.7% (late), p < 0.0001) with no significant change in peri-MI and MI segments between early and late time-points. Time to peak strain (TTP) was significantly longer in MI, compared to normal and peri-MI segments, both early (440 ± 40 ms vs. 329 ± 40 ms and 332 ± 36 ms, respectively; p = 0.0002) and late post-MI (442 ± 63 ms vs. 321 ± 40 ms and 355 ± 61 ms, respectively; p = 0.012). The standard deviation of TTP in 16 segments (SD16) significantly increased post-MI: 28 ± 7 ms to 50 ± 10 ms (early, p = 0.012) to 54 ± 19 ms (late, p = 0.004), with no change between early and late post-MI time-points (p = 0.56). TTP was not related to reduction of segmental contractility. EAM revealed late electrical activation and greatly diminished conduction velocity in the infarct (5.7 ± 2.4 cm/s), when compared to peri-infarct (18.7 ± 10.3 cm/s) and remote myocardium (39 ± 20.5 cm/s). CONCLUSIONS: Mechanical dyssynchrony occurs early after MI and is the result of delayed electrical and mechanical activation in the infarct.
Resumo:
Normal myocardium adapts to increase of nutritional fatty acid supply by upregulation of regulatory proteins of the fatty acid oxidation pathway. Because advanced heart failure is associated with reduction of regulatory proteins of fatty acid oxidation, we hypothesized that failing myocardium may not be able to adapt to increased fatty acid intake and therefore undergo lipid accumulation, potentially aggravating myocardial dysfunction. We determined the effect of high-fat diet in transgenic mice with overexpression of angiotensinogen in the myocardium (TG1306/R1). TG1306/R1 mice develop ANG II-mediated left ventricular hypertrophy, and at one year of age approximately half of the mice present heart failure associated with reduced expression of regulatory proteins of fatty acid oxidation and reduced palmitate oxidation during ex vivo working heart perfusion. Hypertrophied hearts from TG1306/R1 mice without heart failure adapted to high-fat feeding, similarly to hearts from wild-type mice, with upregulation of regulatory proteins of fatty acid oxidation and enhancement of palmitate oxidation. There was no myocardial lipid accumulation or contractile dysfunction. In contrast, hearts from TG1306/R1 mice presenting heart failure were unable to respond to high-fat feeding by upregulation of fatty acid oxidation proteins and enhancement of palmitate oxidation. This resulted in accumulation of triglycerides and ceramide in the myocardium, and aggravation of contractile dysfunction. In conclusion, hearts with ANG II-induced contractile failure have lost the ability to enhance fatty acid oxidation in response to increased fatty acid supply. The ensuing accumulation of lipid compounds may play a role in the observed aggravation of contractile dysfunction.
Resumo:
Myocardial tagging has shown to be a useful magnetic resonance modality for the assessment and quantification of local myocardial function. Many myocardial tagging techniques suffer from a rapid fading of the tags, restricting their application mainly to systolic phases of the cardiac cycle. However, left ventricular diastolic dysfunction has been increasingly appreciated as a major cause of heart failure. Subtraction based slice-following CSPAMM myocardial tagging has shown to overcome limitations such as fading of the tags. Remaining impediments to this technique, however, are extensive scanning times (approximately 10 min), the requirement of repeated breath-holds using a coached breathing pattern, and the enhanced sensitivity to artifacts related to poor patient compliance or inconsistent depths of end-expiratory breath-holds. We therefore propose a combination of slice-following CSPAMM myocardial tagging with a segmented EPI imaging sequence. Together with an optimized RF excitation scheme, this enables to acquire as many as 20 systolic and diastolic grid-tagged images per cardiac cycle with a high tagging contrast during a short period of sustained respiration.
Resumo:
Tako-tsubo cardiomyopathy or "transient left ventricular (LV) apical ballooning" clinically presents like acute myocardial infarction without angiographic stenosis on coronary angiogram and a transient (reversible) LV apical ballooning. We discuss here about a 56-year-old woman complains of first constrictive chest pain with ST elevation in leads V2-V6 and minimal enzymatic release. Coronary angiogram demonstrates vessels without stenosis and the left ventriculogram an extensive LV apical wall motion abnormalities. LV dysfunction will only be transient since 24 hours after admission echographic images demonstrate quite complete recovery of LV systolic function. The pain disappears 12 hours after admission and the creatine kinase level normalize after 48 hours.
Resumo:
Recent progress in cancer therapy has dramatically modified the course and prognosis of some malignancies. Chemo and radiotherapy, along with newer targeted treatments, are given to control symptoms, postpone relapse, or attempt cure. However, many of these regimens are associated with adverse cardiovascular effects such as impaired left ventricular function, myocardial ischemia, hypertension, and arrhythmia. Awareness of potential cardiotoxicity is important, as it may allow practitioners to recognize early signs of cardiac complications and to adapt therapy in order to limit detrimental effects. Diagnosis of cardiovascular complications may iustify the introduction of cardiologic therapies, and may require the reassessment of risk/benefit ratios related to specific cancer therapy. Screening and follow up strategies are proposed.
Resumo:
Acute myocardial dysfunction is a typical manifestation of septic shock. Experimentally, the administration of endotoxin [lipopolysacharride (LPS)] to laboratory animals is frequently used to study such dysfunction. However, a majority of studies used load-dependent indexes of cardiac function [including ejection fraction (EF) and maximal systolic pressure increment (dP/dt(max))], which do not directly explore cardiac inotropism. Therefore, we evaluated the direct effects of LPS on myocardial contractility, using left ventricular (LV) pressure-volume catheters in mice. Male BALB/c mice received an intraperitoneal injection of E. coli LPS (1, 5, 10, or 20 mg/kg). After 2, 6, or 20 h, cardiac function was analyzed in anesthetized, mechanically ventilated mice. All doses of LPS induced a significant drop in LV stroke volume and a trend toward reduced cardiac output after 6 h. Concomitantly, there was a significant decrease of LV preload (LV end-diastolic volume), with no apparent change in LV afterload (evaluated by effective arterial elastance and systemic vascular resistance). Load-dependent indexes of LV function were markedly reduced at 6 h, including EF, stroke work, and dP/dt(max). In contrast, there was no reduction of load-independent indexes of LV contractility, including end-systolic elastance (ejection phase measure of contractility) and the ratio dP/dt(max)/end-diastolic volume (isovolumic phase measure of contractility), the latter showing instead a significant increase after 6 h. All changes were transient, returning to baseline values after 20 h. Therefore, the alterations of cardiac function induced by LPS are entirely due to altered loading conditions, but not to reduced contractility, which may instead be slightly increased.
Resumo:
In Part I of this review, we have covered basic concepts regarding cardiorespiratory interactions. Here, we put this theoretical framework to practical use. We describe mechanisms underlying Kussmaul's sign and pulsus paradoxus. We review the literature on the use of respiratory variations of blood pressure to evaluate volume status. We show the possibilities of attaining the latter aim by investigating with ultrasonography how the geometry of great veins fluctuates with respiration. We provide a Guytonian analysis of the effects of PEEP on cardiac output. We terminate with some remarks on the potential of positive pressure breathing to induce acute cor pulmonale, and on the cardiovascular mechanisms that at times may underly the failure to wean a patient from the ventilator.
Resumo:
Purpose: The M-band is an important cytoskeletal structure in the centre of the sarcomere, believed to cross-link the thick filament lattice. Its main components are three closely related modular proteins from the myomesin gene family: Myomesin, M-protein and myomesin-3. Each muscle is characterized by its unique M-band protein composition, depending on the contractile parameters of a particular fiber. To investigate the role of the M-band in one of the most relevant and clinically increasing cardiac diseases, we analyzed the expression of myomesin proteins in dilated cardiomyopathy (DCM).Methods: In a previous study we analyzed mouse models suffering from DCM, demonstrating that the embryonic heart specific EH-myomesin splicing isoform was up-regulated directly corresponding to the degree of cardiac dysfunction and ventricular dilation. Based on this study, human ventricular and atrial samples (n=32) were obtained during heart surgery after informed consent and approval by an institutional review board. Patients were aged 30-70 years and suffered from dilated cardiomyopathy (DCM;n=13), Hypertrophic Cardiomyopathy (HCM;n=10) or served as controls (n=9). Patients suffering from DCM or HCM were in endstage heart-failure (NYHA III-IV) and either underwent heart transplantation or Left Ventricular Assist Device (LVAD) implantation. Heart samples from patients who underwent valve surgery or congenital heart surgery served as controls. Heart Samples were analyzed using RT-PCR, Western blot, and immunofluorescence.Results: By investigating the expression pattern of myomesins, we found that DCM is accompanied by specific M-band alterations, which were more pronounced in ventricular samples compared to the atrium. Changes in the amounts of different myomesins during DCM occurred in a cell-specific manner, leading to a higher heterogeneity of the cytoskeleton in cardiomyocytes through the myocardial wall with some cells switching completely to an embryonic phenotype.Conclusions: Here we present that the embryonic heart specific EH-myomesin isoform is up-regulated in human DCM. The alterations of the M-band protein composition might be part of a general adaptation of the sarcomeric cytoskeleton to unfavorable working conditions in the failing heart and may modify the mechanical properties of the cardiomyocytes. We suggest that the upregulation of EH-myomesin might play a pivotal role in DCM and might support classical imagingas a novel sarcomeric marker for this disease.
Resumo:
Non-infarcted myocardium after coronary occlusion undergoes progressive morphological and functional changes. The purpose of this study was to determine whether non-infarcted myocardium exhibits (1) alteration of the substrate pattern of myocardial metabolism and (2) concomitant changes in the expression of regulatory proteins of glucose and fatty acid metabolism. Myocardial infarction was induced in rats by ligation of the left coronary artery. One day and eight weeks after coronary occlusion, glucose and palmitate oxidation were measured. Expression of selected proteins of metabolism were determined one day to 12 weeks after infarction. One day after coronary occlusion no difference of glucose and palmitate oxidation was detectable, whereas after eight weeks, glucose oxidation was increased (+84%, P<0.05) and palmitate oxidation did not change significantly (-19%, P=0.07) in infarct-containing hearts, compared with hearts from sham-operated rats. One day after coronary occlusion, myocardial mRNA expression of the glucose transporter GLUT-1 was increased (+86%, P<0.05) and the expression of GLUT-4 was decreased (-28%, P<0.05) in surviving myocardium of infarct-containing hearts. Protein level of GLUT-1 was increased (+81%, P<0.05) and that of GLUT-4 slightly, but not significantly, decreased (-16%, P=NS). mRNA expressions of heart fatty acid binding protein (H-FABP), and of medium chain acyl-CoA dehydrogenase (MCAD), were decreased by 36% (P<0.05) and 35% (P=0. 07), respectively. Eight weeks after acute infarction, the left ventricle was hypertrophied and, at this time-point, there was no difference in the expression of GLUT-1 and GLUT-4 between infarcted and sham-operated hearts. However, myocardial mRNA and protein content of MCAD were decreased by 30% (P<0.01) and 27% (P<0.05), respectively. In summary, in surviving myocardium, glucose oxidation was increased eight weeks after coronary occlusion. Concomitantly, mRNA and protein expression of MCAD were decreased, compatible with a role of altered expression of regulatory proteins of metabolism in post-infarction modification of myocardial metabolism.
Resumo:
There is much evidence for a causal relationship between salt intake and blood pressure (BP). The current salt intake in many countries is between 9 and 12 g/day. A reduction in salt intake to the recommended level of 5-6 g/day lowers BP in both hypertensive and normotensive individuals. A further reduction to 3-4 g/day has a much greater effect. Prospective studies and outcome trials have demonstrated that a lower salt intake is associated with a decreased risk of cardiovascular disease. Increasing evidence also suggests that a high salt intake is directly related to left ventricular hypertrophy (LVH) independent of BP. Both raised BP and LVH are important risk factors for heart failure. It is therefore possible that a lower salt intake could prevent the development of heart failure. In patients who already have heart failure, a high salt intake aggravates the retention of salt and water, thereby exacerbating heart failure symptoms and progression of the disease. A lower salt intake plays an important role in the management of heart failure. Despite this, currently there is no clear evidence on how far salt intake should be reduced in heart failure. Our personal view is that these patients should reduce their salt intake to <5 g/day, i.e. the maximum intake recommended by the World Health Organisation for all adults. If salt intake is successfully reduced, there may well be a need for a reduction in diuretic dosage.