915 resultados para Layered and staggered structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed non-equilibrium state diagram of shape-anisotropic particle fluids is constructed. The effects of particle shape are explored using Naive Mode Coupling Theory (NMCT), and a single particle Non-linear Langevin Equation (NLE) theory. The dynamical behavior of non-ergodic fluids are discussed. We employ a rotationally frozen approach to NMCT in order to determine a transition to center of mass (translational) localization. Both ideal and kinetic glass transitions are found to be highly shape dependent, and uniformly increase with particle dimensionality. The glass transition volume fraction of quasi 1- and 2- dimensional particles fall monotonically with the number of sites (aspect ratio), while 3-dimensional particles display a non-monotonic dependence of glassy vitrification on the number of sites. Introducing interparticle attractions results in a far more complex state diagram. The ideal non-ergodic boundary shows a glass-fluid-gel re-entrance previously predicted for spherical particle fluids. The non-ergodic region of the state diagram presents qualitatively different dynamics in different regimes. They are qualified by the different behaviors of the NLE dynamic free energy. The caging dominated, repulsive glass regime is characterized by long localization lengths and barrier locations, dictated by repulsive hard core interactions, while the bonding dominated gel region has short localization lengths (commensurate with the attraction range), and barrier locations. There exists a small region of the state diagram which is qualified by both glassy and gel localization lengths in the dynamic free energy. A much larger (high volume fraction, and high attraction strength) region of phase space is characterized by short gel-like localization lengths, and long barrier locations. The region is called the attractive glass and represents a 2-step relaxation process whereby a particle first breaks attractive physical bonds, and then escapes its topological cage. The dynamic fragility of fluids are highly particle shape dependent. It increases with particle dimensionality and falls with aspect ratio for quasi 1- and 2- dimentional particles. An ultralocal limit analysis of the NLE theory predicts universalities in the behavior of relaxation times, and elastic moduli. The equlibrium phase diagram of chemically anisotropic Janus spheres and Janus rods are calculated employing a mean field Random Phase Approximation. The calculations for Janus rods are corroborated by the full liquid state Reference Interaction Site Model theory. The Janus particles consist of attractive and repulsive regions. Both rods and spheres display rich phase behavior. The phase diagrams of these systems display fluid, macrophase separated, attraction driven microphase separated, repulsion driven microphase separated and crystalline regimes. Macrophase separation is predicted in highly attractive low volume fraction systems. Attraction driven microphase separation is charaterized by long length scale divergences, where the ordering length scale determines the microphase ordered structures. The ordering length scale of repulsion driven microphase separation is determined by the repulsive range. At the high volume fractions, particles forgo the enthalpic considerations of attractions and repulsions to satisfy hard core constraints and maximize vibrational entropy. This results in site length scale ordering in rods, and the sphere length scale ordering in Janus spheres, i.e., crystallization. A change in the Janus balance of both rods and spheres results in quantitative changes in spinodal temperatures and the position of phase boundaries. However, a change in the block sequence of Janus rods causes qualitative changes in the type of microphase ordered state, and induces prominent features (such as the Lifshitz point) in the phase diagrams of these systems. A detailed study of the number of nearest neighbors in Janus rod systems reflect a deep connection between this local measure of structure, and the structure factor which represents the most global measure of order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last three decades, there has been a broad academic and industrial interest in conjugated polymers as semiconducting materials for organic electronics. Their applications in polymer light-emitting diodes (PLEDs), polymer solar cells (PSCs), and organic field-effect transistors (OFETs) offer opportunities for the resolution of energy issues as well as the development of display and information technologies1. Conjugated polymers provide several advantages including low cost, light weight, good flexibility, as well as solubility which make them readily processed and easily printed, removing the conventional photolithography for patterning2. A large library of polymer semiconductors have been synthesized and investigated with different building blocks, such as acenes or thiophene and derivatives, which have been employed to design new materials according to individual demands for specific applications. To design ideal conjugated polymers for specific applications, some general principles should be taken into account, including (i) side chains (ii) molecular weights, (iii) band gap and HOMO and LUMO energy levels, and (iv) suited morphology.3-6 The aim of this study is to elucidate the impact that substitution exerts on the molecular and electronic structure of π-conjugated polymers with outstanding performances in organic electronic devices. Different configurations of the π-conjugated backbones are analyzed: (i) donor-acceptor configuration, (ii) 1D lineal or 2D branched conjugated backbones, and (iii) encapsulated polymers (see Figure 1). Our combined vibrational spectroscopy and DFT study shows that small changes in the substitution pattern and in the molecular configuration have a strong impact on the electronic characteristics of these polymers. We hope this study can advance useful structure-property relationships of conjugated polymers and guide the design of new materials for organic electronic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-density nanostructured foams are often limited in applications due to their low mechanical and thermal stabilities. Here we report an approach of building the structural units of three-dimensional (3D) foams using hybrid two-dimensional (2D) atomic layers made of stacked graphene oxide layers reinforced with conformal hexagonal boron nitride (h-BN) platelets. The ultra-low density (1/400 times density of graphite) 3D porous structures are scalably synthesized using solution processing method. A layered 3D foam structure forms due to presence of h-BN and significant improvements in the mechanical properties are observed for the hybrid foam structures, over a range of temperatures, compared with pristine graphene oxide or reduced graphene oxide foams. It is found that domains of h-BN layers on the graphene oxide framework help to reinforce the 2D structural units, providing the observed improvement in mechanical integrity of the 3D foam structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

• We developed the first microsatellites for Passiflora setacea and characterized new sets of markers for P. edulis and P. cincinnata, enabling further genetic diversity studies to support the conservation and breeding of passion fruit species. • We developed 69 microsatellite markers and, in conjunction with assessments of cross-amplification using primers available from the literature, present 43 new polymorphic microsatellite loci for three species of Passiflora. The mean number of alleles per locus was 3.1, and the mean values of the expected and observed levels of heterozygosity were 0.406 and 0.322, respectively. • These microsatellite markers will be valuable tools for investigating the genetic diversity and population structure of wild and commercial species of passion fruit (Passiflora spp.) and may be useful for developing conservation and improvement strategies by contributing to the understanding of the mating system and hybridization within the genus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mother and infant mortality has been the scope of analysis throughout the history of public health in Brazil and various strategies to tackle the issue have been proposed to date. The Ministry of Health has been working on this and the Rede Cegonha strategy is the most recent policy in this context. Given the principle of comprehensive health care and the structure of the Unified Health System in care networks, it is necessary to ensure the integration of health care practices, among which are the sanitary surveillance actions (SSA). Considering that the integration of health care practices and SSA can contribute to reduce mother and infant mortality rates, this article is a result of qualitative research that analyzed the integration of these actions in four cities in the State of São Paulo/Brazil: Campinas, Indaiatuba, Jaguariúna and Santa Bárbara D'Oeste. The research was conducted through interviews with SSA and maternal health managers, and the data were evaluated using thematic analysis. The results converge with other studies, identifying the isolation of health care practices and SSA. The insertion of SSA in collectively-managed areas appears to be a potential strategy for health planning and implementation of actions in the context under scrutiny.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Passiflora species are distributed throughout Latin America, and Brazil and Colombia serve as the centers of diversity for this genus. We performed cross-species amplification to evaluate 109 microsatellite loci in 14 Passiflora species and estimated the diversity and genetic structure of Passiflora cincinnata, Passiflora setaceae and Passiflora edulis. A total of 127 accessions, including 85 accessions of P. edulis, a commercial species, and 42 accessions of 13 wild species, were examined. The cross-species amplification was effective for obtaining microsatellite loci (average cross-amplification of 70%). The average number of alleles per locus (five) was relatively low, and the average diversity ranged from 0.52 in P. cincinnata to 0.32 in P. setacea. The Bayesian analyses indicated that the P. cincinnata and P. setacea accessions were distributed into two groups, and the P. edulis accessions were distributed into five groups. Private alleles were identified, and suggestions for core collections are presented. Further collections are necessary, and the information generated may be useful for breeding and conservation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Premise of the study: Microsatellite primers were developed for Aulonemia aristulata, an endangered species of economic interest, to further describe its genetic variability and population structure. We also tested cross-amplification in 18 other bamboo species. Methods and Results: Using an enrichment genomic library, 13 microsatellite loci were isolated and characterized in A. aristulata. Seven of these loci were polymorphic. Twelve markers were cross-amplified in at least ten of the tested bamboo species. Conclusions: These markers will be useful for studies on the genetic diversity and structure of A. aristulata, which are important for future conservation, management and breeding programs of this species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to evaluate herbage accumulation, morphological composition, growth rate and structural characteristics in Mombasa grass swards subject to different cutting intervals (3, 5 and 7 wk) during the rainy and dry seasons of the year. Treatments were assigned to experimental units (17.5 m(2)) according to a complete randomised block design, with four replicates. Herbage accumulation was greater in the rainy than in the dry season (83 and 17%, respectively). Herbage accumulation (24,300 kg DM ha(-1)), average growth rate (140 kg DM ha(-1) d(-1)) and sward height (111 cm) were highest in the 7 wk cutting interval, but leaf proportion (56%), leaf:stem (1.6) and leaf:non leaf (1.3) ratios decreased. Herbage accumulation, morphological composition and sward structure of Mombasa grass sward may be manipulated through defoliation frequency. The highest leaf proportion was recorded in the 3-wk cutting interval. Longer cutting intervals affected negatively sward structure, with potential negative effects on utilization efficiency, animal intake and performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wild felids and canids are usually the main predators in the food chains where they dwell and are almost invisible to behavior and ecology researchers. Due to their grooming behavior, they tend to swallow shed hair, which shows up in the feces. DNA found in hair shafts can be used in molecular studies that can unravel, for instance, genetic variability, reproductive mode and family structure, and in some species, it is even possible to estimate migration and dispersion rates in given populations. First, however, DNA must be extracted from hair. We extracted successfully and dependably hair shaft DNA from eight wild Brazilian felids, ocelot, margay, oncilla, Geoffroy's cat, pampas cat, jaguarundi, puma, and jaguar, as well as the domestic cat and from three wild Brazilian canids, maned wolf, crab-eating fox, and hoary fox, as well as the domestic dog. Hair samples came mostly from feces collected at the Sao Paulo Zoo and were also gathered from non-sedated pet or from recently dead wild animals and were also collected from museum specimens. Fractions of hair samples were stained before DNA extraction, while most samples were not. Our extraction protocol is based on a feather DNA extraction technique, based in the phenol: chloroform: isoamyl alcohol general method, with proteinase K as digestive enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effects of high-dose of short-term creatine supplementation (5g.kg(-1). day(-1) to 1 week) and long-term creatine supplementation (1g.kg(-1). day(-1) to 4-8 weeks) on kidney and liver structure and function of sedentary and exercised Wistar rats ( Exercise sessions consisted of swimming at 80% of maximal work load supported during 5 days per week with daily sessions of 60 minutes throughout the duration of the supplementation). Seventy-two animals ( 245 +/- 5g) were divided into four groups (n = 18): control diet Sedentary ( SED), Creatine diet Sedentary (CRE), control diet Exercised (EXE), and Creatine diet Exercised (EXECRE). Histological and blood biochemical studies were performed after one, four, and eight weeks of creatine supplementation and exercise ( n = 6). No differences were found when comparing SED, EXE and EXECRE groups for kidney and liver structure and function at one, four and eight weeks. However, the CRE group showed higher levels of creatinine (1.1 +/- 0.2 vs. 0.4 +/- 0.1 mg.dl(-1); p < 0.05), and urea ( 37 +/- 3 vs. 19 +/- 1 mg. dl(-1); p < 0.05) when compared with all others groups at four and eight weeks. At eight weeks, the CRE group presented increased levels of ALT (41 +/- 7 vs. 23 +/- 7 U.L(-1); p < 0.05), AST (89 +/- 6 vs. 62 +/- 5 U. L(-1); p < 0.05), GGT (8.0 +/- 0.9 vs. 3.9 +/- 1.0 U. L(-1); p < 0.05), and AP (125 +/- 10 vs. 69 +/- 9 U. L(-1); p < 0.05) also when compared with all others groups. Moreover, the CRE group demonstrated some structural alterations indicating renal and hepatic damage at four and eight weeks, respectively. These results suggest that long-term creatine supplementation (up to 4-8 weeks) may adversely affect kidney and liver structure and function of sedentary but not of exercised rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure of thin films composed of a multilayer of PbTe nanocrystals embedded in SiO(2), named as PbTe(SiO(2)), between homogeneous layers of amorphous SiO(2) deposited on a single-crystal Si( 111) substrate was studied by grazing-incidence small-angle X-ray scattering (GISAXS) as a function of PbTe content. PbTe(SiO(2))/SiO(2) multilayers were produced by alternately applying plasma-enhanced chemical vapour deposition and pulsed laser deposition techniques. From the analysis of the experimental GISAXS patterns, the average radius and radius dispersion of PbTe nanocrystals were determined. With increasing deposition dose the size of the PbTe nanocrystals progressively increases while their number density decreases. Analysis of the GISAXS intensity profiles along the normal to the sample surface allowed the determination of the period parameter of the layers and a structure parameter that characterizes the disorder in the distances between PbTe layers. (C) 2010 International Union of Crystallography Printed in Singapore - all rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The melting temperature and the crystallization temperature of Bi nanoclusters confined in a sodium borate glass were experimentally determined as functions of the cluster radius. The results indicate that, on cooling, liquid Bi nanodroplets exhibit a strong undercooling effect for a wide range of radii. The difference between the melting temperature and the freezing temperature decreases for decreasing radius and vanishes for Bi nanoparticles with a critical radius R = 1.9 nm. The magnitude of the variation in density across the melting and freezing transitions for Bi nanoparticles with R = 2 nm is 40% smaller than for bulk Bi. These experimental results support a basic core-shell model for the structure of Bi nanocrystals consisting of a central crystalline volume surrounded by a structurally disordered shell. The volume fraction of the crystalline core decreases for decreasing nanoparticle radius and vanishes for R = 1.9 nm. Thus, on cooling, the liquid nanodroplets with R < 1.9 nm preserve, across the liquid-to-solid transformation, their homogeneous and disordered structure without crystalline core.