974 resultados para Lawrence J.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called Visibility Catchment Area (VCA). This paper attempts to factor into the determination of the VCA of signs, the observation angle of the observer using both experimental and theoretical analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The WTC evacuation of 11 September 2001 provides an unrepeatable opportunity to probe into and understand the very nature of evacuation dynamics and with this improved understanding, contribute to the design of safer, more evacuation efficient, yet highly functional, high rise buildings. Following 9/11 the Fire Safety Engineering Group (FSEG) of the University of Greenwich embarked on a study of survivor experiences from the WTC Twin Towers evacuation. The experiences were collected from published accounts appearing in the print and electronic mass media and are stored in a relational data base specifically developed for this purpose. Using these accounts and other available sources of information FSEG also undertook a series of numerical simulations of the WTC North Tower. This paper represents an overview of the results from both studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signage systems are widely used in buildings to provide information for wayfinding, thereby assisting in navigation during normal circulation of pedestrians and, more importantly, exiting information during emergencies. An important consideration in determining the effectiveness of signs is establishing the region from which the sign is visible to occupants, the so-called visibility catchment area (VCA). This study attempts to factor into the determination of the VCA of signs, the observation angle of the observer. In building regulations, it is implicitly assumed that the VCA is independent of the observation angle. A theoretical model is developed to explain the relationship between the VCA and observation angle and experimental trials are performed in order to assess the validity of this model. The experimental findings demonstrate a consistency with the theoretical model. Given this result, the functionality of a comprehensive evacuation model is extended in accordance with the assumptions on which the theoretical model is based and is then demonstrated using several examples

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The International Maritime Organisation (IMO) has adopted the use of computer simulation to assist in the assessment of the assembly time for passenger ships. A key parameter required for this analysis and specified as part of the IMO guidelines is the passenger response time distribution. It is demonstrated in this paper that the IMO specified response time distribution assumes an unrealistic mathematical form. This unrealistic mathematical form can lead to serious congestion issues being overlooked in the evacuation analysis and lead to incorrect conclusions concerning the suitability of vessel design. In light of these results, it is vital that IMO undertake research to generate passenger response time data suitable for use in evacuation analysis of passenger ships. Until this type of data becomes readily available, it is strongly recommended that rather than continuing to use the artificial and unrepresentative form of the response time distribution, IMO should adopt plausible and more realistic response time data derived from land based applications. © 2005: Royal Institution of Naval Architects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, when designing a ship the driving issues are seen to be powering, stability, strength and seakeeping. Issues related to ship operations and evolutions are investigated later in the design process, within the constraint of a fixed layout. This can result in operational inefficiencies and limitations, excessive crew numbers and potentially hazardous situations. University College London and the University of Greenwich are in the final year of a three year EPSRC funded research project to integrate the simulation of personnel movement into early stage ship design. This allows the assessment of onboard operations while the design is still amenable to change. The project brings together the University of Greenwich developed maritimeEXODUS personnel movement simulation software and the SURFCON implementation of the Design Building Block approach to early stage ship design, which originated with the UCL Ship Design Research team. Central to the success of this project is the definition of a suitable series of Naval Combatant Human Performance Metrics which can be used to assess the performance of the design in different operational scenarios. The paper outlines the progress made on deriving the human performance metric from human factors criteria measured in simulations and their incorporation into a Behavioural Matrix for analysis. It describes the production of a series of SURFCON ship designs based on the RN Type 22 Batch 3 frigate, and their analysis using the PARAMARINE and maritimeEXODUS software. Conclusions to date will be presented on the integration of personnel movement simulation into the preliminary ship design process.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The passenger response time distributions adopted by the International Maritime Organisation (IMO)in their assessment of the assembly time for passanger ships involves two key assumptions. The first is that the response time distribution assumes the form of a uniform random distribution and the second concerns the actual response times. These two assumptions are core to the validity of the IMO analysis but are not based on real data, being the recommendations of an IMO committee. In this paper, response time data collected from assembly trials conducted at sea on a real passanger vessel using actual passangers are presented and discussed. Unlike the IMO specified response time distributions, the data collected from these trials displays a log-normal distribution, similar to that found in land based environments. Based on this data, response time distributions for use in the IMO assesmbly for the day and night scenarios are suggested

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Computer egress simulation has potential to be used in large scale incidents to provide live advice to incident commanders. While there are many considerations which must be taken into account when applying such models to live incidents, one of the first concerns the computational speed of simulations. No matter how important the insight provided by the simulation, numerical hindsight will not prove useful to an incident commander. Thus for this type of application to be useful, it is essential that the simulation can be run many times faster than real time. Parallel processing is a method of reducing run times for very large computational simulations by distributing the workload amongst a number of CPUs. In this paper we examine the development of a parallel version of the buildingEXODUS software. The parallel strategy implemented is based on a systematic partitioning of the problem domain onto an arbitrary number of sub-domains. Each sub-domain is computed on a separate processor and runs its own copy of the EXODUS code. The software has been designed to work on typical office based networked PCs but will also function on a Windows based cluster. Two evaluation scenarios using the parallel implementation of EXODUS are described; a large open area and a 50 story high-rise building scenario. Speed-ups of up to 3.7 are achieved using up to six computers, with high-rise building evacuation simulation achieving run times of 6.4 times faster than real time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work explores the impact of response time distributions on high-rise building evacuation. The analysis utilises response times extracted from printed accounts and interviews of evacuees from the WTC North Tower evacuation of 11 September 2001. Evacuation simulations produced using these “real” response time distributions are compared with simulations produced using instant and engineering response time distributions. Results suggest that while typical engineering approximations to the response time distribution may produce reasonable evacuation times for up to 90% of the building population, using this approach may underestimate total evacuation times by as much as 61%. These observations are applicable to situations involving large high-rise buildings in which travel times are generally expected to be greater than response times

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper examines the influence of exit availability on evacuation time for a narrow body aircraft under certification trial conditions using computer simulation. A narrow body aircraft which has previously passed the certification trial is used as the test configuration. While maintaining the certification requirement of 50% of the available exits, six different exit configurations are examined. These include the standard certification configuration (one exit from each exit pair) and five other exit configurations based on commonly occurring exit combinations found in accidents. These configurations are based on data derived from the AASK database and the evacuation simulations are performed using the airEXODUS evacuation simulation software. The results show that the certification practice of using half the available exits predominately down one side of the aircraft is neither statistically relevant nor challenging. For the aircraft cabin layout examined, the exit configuration used in certification trial produces the shortest egress times. Furthermore, three of the six exit combinations investigated result in predicted egress times in excess of 90 seconds, suggesting that the aircraft would not satisfy the certification requirement under these conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The SMARTFIRE Computational Fluid Dynamics (CFD) fire field model has successfully reproduced the observed characteristics including measured temperatures, species concentrations and time to flashover for a post-crash fire experiment conducted by the FAA within their C-133 cabin test facility. In this test only one exit was open in order to provide ventilation for the developing cabin fire. In real post-crash fires, many exits are likely to be open as passangers attempt to evacuate. In this paper, the likely impacts on evacuation of a post-crash fire in which various exiting combinations are available are investigated. The fire scenario, investigated using the SMARTFIRE software, is based on the C-133 experiment but with a fully furnished cabin and with four different exit availability options. The fire data is imported into the airEXODUS evacuation simulation software and the resulting evacuations examined. The combined fire and evacuation analysis reveals that even though the aircraft configuration is predicted to comfortably satisfy the evacuation certification requirement, when fire is included, a number of casualties result, even from the certification compliant exit configuration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluating ship layout for human factors (HF) issues using simulation software such as maritimeEXODUS can be a long and complex process. The analysis requires the identification of relevant evaluation scenarios; encompassing evacuation and normal operations; the development of appropriate measures which can be used to gauge the performance of crew and vessel and finally; the interpretation of considerable simulation data. Currently, the only agreed guidelines for evaluating HFs performance of ship design relate to evacuation and so conclusions drawn concerning the overall suitability of a ship design by one naval architect can be quite different from those of another. The complexity of the task grows as the size and complexity of the vessel increases and as the number and type of evaluation scenarios considered increases. Equally, it can be extremely difficult for fleet operators to set HFs design objectives for new vessel concepts. The challenge for naval architects is to develop a procedure that allows both accurate and rapid assessment of HFs issues associated with vessel layout and crew operating procedures. In this paper we present a systematic and transparent methodology for assessing the HF performance of ship design which is both discriminating and diagnostic. The methodology is demonstrated using two variants of a hypothetical naval ship.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, when designing a ship the driving issues are seen to be powering, stability, strength and seakeeping. Issues related to ship operations and evolutions are investigated later in the design process, within the constraint of a fixed layout. This can result in operational inefficiencies and limitations, excessive crew numbers and potentially hazardous situations. This paper summarises work by University College London and the University of Greenwich prior to the completion of a three year EPSRC funded research project to integrate the simulation of personnel movement into early stage ship design. This integration is intended to facilitate the assessment of onboard operations while the design is still highly amenable to change. The project brings together the University of Greenwich developed maritimeEXODUS personnel movement simulation software and the SURFCON implementation of the Design Building Block approach to early stage ship design, which originated with the UCL Ship Design Research team and has been implemented within the PARAMARINE ship design system produced by Graphics Research Corporation. Central to the success of this project is the definition of a suitable series of Performance Measures (PM) which can be used to assess the human performance of the design in different operational scenarios. The paper outlines the progress made on deriving the PM from human dynamics criteria measured in simulations and their incorporation into a Human Performance Metric (HPM) for analysis. It describes the production of a series of SURFCON ship designs, based on the Royal Navy’s Type 22 Batch 3 frigate, and their analysis using the PARAMARINE and maritimeEXODUS software. Conclusions on the work to date and for the remainder of the project are presented addressing the integration of personnel movement simulation into the preliminary ship design process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article, the representation of the merging process at the floor— stair interface is examined within a comprehensive evacuation model and trends found in experimental data are compared with model predictions. The analysis suggests that the representation of floor—stair merging within the comprehensive model appears to be consistent with trends observed within several published experiments of the merging process. In particular: (a) The floor flow rate onto the stairs decreases as the stair population density increases. (b) For a given stair population density, the floor population's flow rate onto the stairs can be maximized by connecting the floor to the landing adjacent to the incoming stair. (c) In situations where the floor is connected adjacent to the incoming stair, the merging process appears to be biased in favor of the floor population. It is further conjectured that when the floor is connected opposite the incoming stair, the merging process between the stair and floor streams is almost in balance for high stair population densities, with a slight bias in favor of the floor stream at low population densities. A key practical finding of this analysis is that the speed at which a floor can be emptied onto a stair can be enhanced simply by connecting the floor to the landing at a location adjacent to the incoming stair rather than opposite the stair. Configuring the stair in this way, while reducing the floor emptying time, results in a corresponding decrease in the descent flow rate of those already on the stairs. While this is expected to have a negligible impact on the overall time to evacuate the building, the evacuation time for those higher up in the building is extended while those on the lower flows is reduced. It is thus suggested that in high-rise buildings, floors should be connected to the landing on the opposite side to the incoming stair. Information of this type will allow engineers to better design stair—floor interfaces to meet specific design objectives.