934 resultados para LIQUID PHASE SEPARATION
Resumo:
Liquid phase oxidation of cyclohexane was carried out under mild reaction condition over copper pyrophosphate catalyst in CH3CN using hydrogen peroxide as an oxidant at the temperature between 25 and 80 degrees C. The copper pyrophosphate catalyst was characterized by means of XRD, FT-IR and water contact angle measurement. It was found that appropriate surface hydrophobicity is the key factor for the excellent performance of the catalyst. In addition, a significant improvement for the cyclohexane conversion in the presence of organic acid was observed.
Resumo:
We have synthesized a porous co-polyimide film by coagulating a polyimide precursor in the non-solvent and thermal imidization. Factors affecting the morphology, pore size, porosity, and mechanical strength of the film were discussed. The porous polyimide matrix consists of a porous top layer and a spongy sub-structure with micropores. It is used as a porous matrix to construct sulfonated poly(styrene-ran-ethylene) (SPSE) infiltrated composite membrane for direct methanol fuel cell (DMFC) application. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced, while high proton conductivity is still maintained. Because of its higher proton conductivity and less methanol permeability, single fuel cell performance test demonstrated that this composite membrane outperformed Nafion membrane.
Resumo:
Nanoscale-phase separation of electron donor/acceptor blends is crucial for efficient charge generation and collection in Polymer bulk heterojunction photovoltaic cells. We investigated solvent vapor annealing effect of poly(3-hexylthiophene) (P3HT)/methanofullerene (PCBM) blend oil its morphology and optoelectronic properties. The organic solvents of choice for the treatment have a major effect oil the morphology of P3HT/PCBM blend and the device performance. Ultraviolet-visible absorption spectro,;copy shows that specific solvent vapor annealing can induce P3HT self-assembling to form well-ordered structure; and hence, file absorption in the red region and the hole transport are enhanced. The solvent that has a poor Solubility to PCBM Would cause large PCBM Clusters and result in a rough blend film. By combining an appropriate solvent vapor treatment and post-thermal annealing of the devices, the power conversion efficiency is enhanced.
Resumo:
CeF3 and CeF3:Tb3+ nanoparticles were prepared by reverse microemulsion with a functional monomer, methyl methacrylate (MMA), as the oil phase, and CeF3:Tb3+/poly (methyl methacrylate) (PMMA) nanocomposites were obtained via polymerization of the MMA monomer. The nanoparticles and nanocomposites have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), low- and high-resolution transmission electron microscope (TEM), selected-area electron diffraction (SAED), thermogravimetric analysis (TGA), UV/vis transmission spectra, photoluminescence excitation, and emission spectra and luminescence decays. The well-crystallized CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 15 nm. They show the characteristic emission of Ce3+ 5d-4f (313 nm, D-2-F-2(5/2); 323 nm, D-2-F-2(7/2)) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 541 nm as the strongest one) transitions, respectively.
Resumo:
Uniform lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) nanoparticles have been systematically synthesized via a facile, fast, efficient ultrasonic irradiation of inorganic salt aqueous solution under ambient conditions without any surfactant or template. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), photoluminescence (PL) spectra as well as kinetic decays were employed to characterize the samples. The SEM and the TEM images show that the hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La, Ce, Pr, Nd. Sm, Eu, Gd) products have nanorod bundles morphology, while the tetragonal LnPO(4) (Ln = Tb, Dy, Ho) samples prepared under the same experimental conditions are composed of nanoparticles. HRTEM micrographs and SAED results prove that these nanostructures are polycrystalline in nature.
Resumo:
The reaction rates of the hydrogenation of maleic anhydride (MAH) and succinic anhydride (SAH) were significantly accelerated and the selectivity to gamma-butyrolactone (GBL) was enhanced largely when the reaction mixture was pressurized by a non-reactant of CO2. Above 99% selectivity to GBL was achieved in 14 MPa CO2, the superior selectivity in scCO(2) was attributed to that MAH and/or SAH could be extracted to CO2 phase and separated from H2O, the hydrolysis were thus minimized and so the selectivity to GBL was improved.
Resumo:
The hydrogen bonding and crystallization of a biodegradable poly(ester urethane) copolymer based on poly(L-lactide) (PLLA) as the soft segment were investigated by FTIR. On slow cooling from melt, the onset and the progress of the crystallization of the urethane hard segments were correlated to the position, width, and relative intensity of the hydrogen-bonded N-H stretching band. The interconversion between the "free" and hydrogen-bonded N-H and C=O groups in the urethane units in the process was also revealed by 2D correlation analysis of the FTIR data. The crystallization of the PLLA soft segments was monitored by the ester C=O stretching and the skeletal vibrations. It was revealed that the PLLA crystallization was restricted by the phase separation and the urethane crystallization, and at cooling rates of 10 degrees C/min or higher, the crystallization of the PLLA soft segments was prohibited.
Resumo:
Finding a Suitable plasticizer for polylactide (PLA) is necessary to overcome its brittleness and enlarge its range of applications. In this study, commercial PLA was melt-blended with a new plasticizer, an ethylene glycol/propylene glycol random copolymer [poly(ethylene glycol-co-propylene glycol) (PEPG)] with a typical number-average molecular weight of 1.2 kDa and an ethylene glycol content of 78.7 mol %. The thermal properties, crystallization behavior, and mechanical properties of the quenched blends and the properties of the blends after storage for 2 months under the ambient conditions were investigated in detail. The advantage of using PEPG is that it does not crystallize at room temperature and has good compatibility with PLA. The quenched PLA/PEPG blends were homogeneous and amorphous systems. With an increase in the PEPG content (5-20%), the glass-transition temperature, tensile strength, and modulus of the blends decreased, whereas the elongation at break and crystallizability increased dramatically. The cold crystallization of PLA resulted in phase separation of the PLA/PEPG blends by annealing of the blends at the crystallization temperature.
Resumo:
CeF3: Tb3+ nanoparticles (short pillar-like morphology with an average length and width of 11 and 5 nm, respectively) were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with a SiO2-NH2 layer, these CeF3: Tb3+ nanoparticles can be conjugated with biotin molecules (activated by thionyl chloride) and further with avidin. The as-formed CeF3: Tb3+ nanoparticles, CeF3: Tb3+ nanoparticles functionalized with amino groups, biotin conjugated amino-functionalized CeF3: Tb3+ nanoparticles and biotinylated CeF3: Tb3+ nanoparticles bonded with avidin were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), UV/vis absorption spectra and luminescence spectra, respectively. The biofunctionalization of the CeF3: Tb3+ nanoparticles has less effect on their luminescence properties, i.e. they still show strong green emission (from Tb3+, with D-5(4) - F-7(5) at 543 nm as the most prominent group), indicative of the great potential for these CeF3: Tb3+ nanoparticles to be used as biological fluorescence probes.
Resumo:
A method for preparing nanoelectrode ensembles based on semi-interpenetrating network (SIN) of multi-walled carbon nanotubes (MWNTs) on gold electrode through phase-separation method is initially proposed. Individual nanoelectrode owns irregular three-dimensional MWNTs networks, which is denoted as SIN-MWNTs. On the as-prepared SIN-MWNTs nanoelectrode ensembles, the assembled MWNTs clusters in nanoscale serve as individual nanoelectrode and the electroinactive lipid networks located on the top of alkanethiol monolayer are used as a shielding layer. Cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), tapping-mode atomic force microscopy (TM-AFM) and scanning electron microscopy (SEM) were used to characterize the as-prepared SIN-MWNT nanoelectrode ensembles. Experimental results indicate that the well-defined nanoelectrode ensembles were prepared through self-assembly technology. Meantime, sigmoid curves in a wide scanning range can be obtained in CV experiments. This study may pave the way for the construction of truly nanoscopic nanoelectrode arrays by bottom-up strategy.
Resumo:
Poly(3-butylthiophene) (P3BT)/insulating-polymer composites with high electrical conductivity have been prepared directly from the solution. These composites exhibit much higher conductivity compared to pure P3BT with the same preparation method provided that P3BT content is higher than 10 wt %. Morphological studies on both the pure P3BT and the composites with insulating polymer show that P3BT highly crystallizes and develops into whisker-like crystals. These nanowires are homogeneously distributed within the insulating polymer matrix and form conductive networks, which provide both extremely large interface area between conjugated polymer and insulating polymer matrix and highly efficient conductive channels through out the whole composite. In contrast, the conductivity enhancement of P3HT/PS composite is not so obvious and drops down immediately with increased PS content due mainly to the absence of highly crystalline whisker-like crystals and much larger scale phase separation between the components. The results presented here could further illuminate the origin of conductivity formation in organic semiconducting composites and promote applications of these polymer semiconductor/insulator composites in the fields of organic (opto-)electronics, electromagnetic shielding, and antistatic materials.
Resumo:
Deuterated polyethylene tracer molecules with small amount of branches (12 C2H5- branches per 1000 backbone carbon atoms) were blended with a hydrogenated polyethylene matrix to form a homogenous mixture. The conformational evolution of the deuterated chains in a stretched semi-cry stall me film was observed via online small angle neutron scattering measurements during annealing at high temperatures close to the melting point. Because the sample was annealed at a temperature closely below its melting point, the crystalline lamellae were only partially molten and the system could not fully relax. The global chain dimensions were preserved during annealing. Recrystallization of released polymeric chain segments allows for local phase separation thus driving the deuterated chain segments into the confining interlamellar amorphous layers giving rise to an interesting intra-molecular clustering effect of the long deuterated chain. This clustering is deduced from characteristic small angle neutron scattering patterns. The confined phase separation has its origin in primarily the small amount of the branches on the deuterated polymers which impede the crystallization of the deuterated chain segments.
Resumo:
The activity and selectivity of the transition metal complexes formed from Ru, Rh, Pd and Ni with triphenylphosphine (TPP) have been investigated for hydrogenation of citral in supercritical carbon dioxide (scCO(2)). High activities are obtained with Ru/TPP and Pd/TPP catalysts, and the overall activity is in the order of Pd approximate to Ru > Rh > Ni. The Ru/TPP complex is highly selective to the formation of unsaturated alcohols of geraniol and nerol. In contrast, the Pd/TPP catalyst is more selective to partially saturated aldehydes of citronellal. Furthermore, the influence of several parameters such as CO2 and H-2 pressures, N-2 pressure and reaction time has been discussed. CO2 pressure has a significant impact on the product distribution, and the selectivity for geraniol and nerol can be enhanced from 27% to 75% with increasing CO2 pressure from 6 to 16 MPa, while the selectivity for citronellol decreases from 70% to 20%. Striking changes in the conversion and product distribution in scCO(2) could be interpreted with variations in the phase behavior and the molecular interaction between CO2 and the substrate in the gas phase and in the liquid phase.
Resumo:
The selective oxidation of cyclohexane to cyclohexanol and cyclohexanone is an important chemical process and it has been paid more attentions recently. In the present work, the stainless steel reactor wall was found to influence the selective oxidation of cyclohexane very significantly, and a quasi-crystalline Ti45Zr35Ni17Cu3 alloy with the similar compositions as the reactor wall was used as a catalyst for the cyclohexane oxidation, as expected, a higher activity was obtained with it. The present results open up a new avenue for developing new catalyst for alkane oxidation.
Resumo:
Graft copolymerization in the molten state is of fundamental importance as a probe of chemical modification and reactive compatibilization. However, few grafting kinetic studies on reactive extrusion have been carried out because of the inherent difficulties, as expected. In this work, we have studied chain propagation kinetics on melt grafting using pre-irradiated linear low density polyethylene (LLDPE) and three monomers, acrylic acid (AA), methacrylic acid (MAA), and methyl methacrylate (MMA), as the model system. We measured the apparent chain propagation rate coefficients of grafting (k(p,g)) and homopolymerization (k(p,h)) at an initial stage for the melt grafting by FT-IR spectroscopy and electron spin resonance spectroscopy. It was observed that the convective mixing affected the rate coefficients. The magnitude of k(p,h) and k(p,g) were in the same order, but k(p,h) was slightly larger than k(p,g) The k(p,g) of the three grafting systems increased in the order: LLDPE/MMA < LLDPE/MAA < LLDPE/AA. These results are explained in terms of phase separation, solubility, and inherent reactivity of the monomer.