805 resultados para LEARNING OBJECTS REPOSITORIES - MODELS
Resumo:
Background: Defining learning goals (LG) in alignment with learning needs (LN) is one of the key purposes of formative workplace-based assessment, but studies about this topic are scarce. Summary of Work: We analysed quantitatively and qualitatively how often trainer-student pairs identified the same LN during Mini Clinical Evaluation Exercises (Mini-CEX) in clerkships and to what degree those LNs were in line with the recorded LGs. Multilevel logistic regression models were used to predict LGs by identified LNs, controlling for context variables. Summary of Results: 512 trainers and 165 students conducted 1783 Mini-CEX (98% completion rate). Concordantly, trainer-student pairs most often identified LNs in the domains ‘clinical reasoning’ (23% of 1167 complete forms), ‘organisation / efficiency’ (20%) and ‘physical examination’ (20%). At least one ‘defined’ LG was noted on 313 student forms (18% of 1710), with a total of 446 LGs. Of these, the most frequent LGs were ‘physical examination’ (49% of 446 LGs) and ‘history taking’ (21%); corresponding LNs as well as context variables (e.g. clinic size) were found to be predictors of these LGs. Discussion and Conclusions: Although trainer-student pairs often agreed in their identified LNs, many assessments did not result in an aligned LG or a LG at all. Interventions are needed to enhance the proportion of (aligned) LGs in Mini-CEX in order to tap into its full potential not only as a ‘diagnostic’ but also as an ‘educational tool’. Take-home messages: The sparseness of LGs, their dependency on context variables and their partial non-alignment with students’ LNs raise the question of how the effectiveness of Mini-CEX can be further enhanced.
Resumo:
In this paper we present the results from the coverage and the orbit determination accuracy simulations performed within the recently completed ESA study “Assessment Study for Space Based Space Surveillance (SBSS) Demonstration System” (Airbus Defence and Space consortium). This study consisted in investigating the capability of a space based optical sensor (SBSS) orbiting in low Earth orbit (LEO) to detect and track objects in GEO (geosynchronous orbit), MEO (medium Earth orbit) and LEO and to determinate and improve initial orbits from such observations. Space based systems may achieve better observation conditions than ground based sensors in terms of astrometric accuracy, detection coverage, and timeliness. The primary observation mode of the proposed SBSS demonstrator is GEO surveillance, i.e. the systematic search and detection of unknown and known objects. GEO orbits are specific and unique orbits from dynamical point of view. A space-based sensor may scan the whole GEO ring within one sidereal day if the orbit and pointing directions are chosen properly. For an efficient survey, our goal was to develop a leak-proof GEO fence strategy. Collaterally, we show that also MEO, LEO and other (GTO,Molniya, etc.) objects would be possible to observe by the system and for a considerable number of LEO objects to down to size of 1 cm we can obtain meaningful statistical data for improvement and validation of space debris environment models
Resumo:
While sequence learning research models complex phenomena, previous studies have mostly focused on unimodal sequences. The goal of the current experiment is to put implicit sequence learning into a multimodal context: to test whether it can operate across different modalities. We used the Task Sequence Learning paradigm to test whether sequence learning varies across modalities, and whether participants are able to learn multimodal sequences. Our results show that implicit sequence learning is very similar regardless of the source modality. However, the presence of correlated task and response sequences was required for learning to take place. The experiment provides new evidence for implicit sequence learning of abstract conceptual representations. In general, the results suggest that correlated sequences are necessary for implicit sequence learning to occur. Moreover, they show that elements from different modalities can be automatically integrated into one unitary multimodal sequence.
Resumo:
Patient-specific biomechanical models including local bone mineral density and anisotropy have gained importance for assessing musculoskeletal disorders. However the trabecular bone anisotropy captured by high-resolution imaging is only available at the peripheral skeleton in clinical practice. In this work, we propose a supervised learning approach to predict trabecular bone anisotropy that builds on a novel set of pose invariant feature descriptors. The statistical relationship between trabecular bone anisotropy and feature descriptors were learned from a database of pairs of high resolution QCT and clinical QCT reconstructions. On a set of leave-one-out experiments, we compared the accuracy of the proposed approach to previous ones, and report a mean prediction error of 6% for the tensor norm, 6% for the degree of anisotropy and 19◦ for the principal tensor direction. These findings show the potential of the proposed approach to predict trabecular bone anisotropy from clinically available QCT images.
Resumo:
We present a novel surrogate model-based global optimization framework allowing a large number of function evaluations. The method, called SpLEGO, is based on a multi-scale expected improvement (EI) framework relying on both sparse and local Gaussian process (GP) models. First, a bi-objective approach relying on a global sparse GP model is used to determine potential next sampling regions. Local GP models are then constructed within each selected region. The method subsequently employs the standard expected improvement criterion to deal with the exploration-exploitation trade-off within selected local models, leading to a decision on where to perform the next function evaluation(s). The potential of our approach is demonstrated using the so-called Sparse Pseudo-input GP as a global model. The algorithm is tested on four benchmark problems, whose number of starting points ranges from 102 to 104. Our results show that SpLEGO is effective and capable of solving problems with large number of starting points, and it even provides significant advantages when compared with state-of-the-art EI algorithms.
Resumo:
Despite the strong increase in observational data on extrasolar planets, the processes that led to the formation of these planets are still not well understood. However, thanks to the high number of extrasolar planets that have been discovered, it is now possible to look at the planets as a population that puts statistical constraints on theoretical formation models. A method that uses these constraints is planetary population synthesis where synthetic planetary populations are generated and compared to the actual population. The key element of the population synthesis method is a global model of planet formation and evolution. These models directly predict observable planetary properties based on properties of the natal protoplanetary disc, linking two important classes of astrophysical objects. To do so, global models build on the simplified results of many specialized models that address one specific physical mechanism. We thoroughly review the physics of the sub-models included in global formation models. The sub-models can be classified as models describing the protoplanetary disc (of gas and solids), those that describe one (proto)planet (its solid core, gaseous envelope and atmosphere), and finally those that describe the interactions (orbital migration and N-body interaction). We compare the approaches taken in different global models, discuss the links between specialized and global models, and identify physical processes that require improved descriptions in future work. We then shortly address important results of planetary population synthesis like the planetary mass function or the mass-radius relationship. With these statistical results, the global effects of physical mechanisms occurring during planet formation and evolution become apparent, and specialized models describing them can be put to the observational test. Owing to their nature as meta models, global models depend on the results of specialized models, and therefore on the development of the field of planet formation theory as a whole. Because there are important uncertainties in this theory, it is likely that the global models will in future undergo significant modifications. Despite these limitations, global models can already now yield many testable predictions. With future global models addressing the geophysical characteristics of the synthetic planets, it should eventually become possible to make predictions about the habitability of planets based on their formation and evolution.
Resumo:
The study of operations on representations of objects is well documented in the realm of spatial engineering. However, the mathematical structure and formal proof of these operational phenomena are not thoroughly explored. Other works have often focused on query-based models that seek to order classes and instances of objects in the form of semantic hierarchies or graphs. In some models, nodes of graphs represent objects and are connected by edges that represent different types of coarsening operators. This work, however, studies how the coarsening operator "simplification" can manipulate partitions of finite sets, independent from objects and their attributes. Partitions that are "simplified first have a collection of elements filtered (removed), and then the remaining partition is amalgamated (some sub-collections are unified). Simplification has many interesting mathematical properties. A finite composition of simplifications can also be accomplished with some single simplification. Also, if one partition is a simplification of the other, the simplified partition is defined to be less than the other partition according to the simp relation. This relation is shown to be a partial-order relation based on simplification. Collections of partitions can not only be proven to have a partial- order structure, but also have a lattice structure and are complete. In regard to a geographic information system (GIs), partitions related to subsets of attribute domains for objects are called views. Objects belong to different views based whether or not their attribute values lie in the underlying view domain. Given a particular view, objects with their attribute n-tuple codings contained in the view are part of the actualization set on views, and objects are labeled according to the particular subset of the view in which their coding lies. Though the scope of the work does not mainly focus on queries related directly to geographic objects, it provides verification for the existence of particular views in a system with this underlying structure. Given a finite attribute domain, one can say with mathematical certainty that different views of objects are partially ordered by simplification, and every collection of views has a greatest lower bound and least upper bound, which provides the validity for exploring queries in this regard.
Resumo:
One of the most important uses of manipulatives in a classroom is to aid a learner to make connection from tangible concrete object to its abstraction. In this paper we discuss how teacher educators can foster deeper understanding of how manipulatives facilitate student learning of math concepts by emphasizing the connection between concrete objects and math symbolization with, preservice elementary teachers, the future implementers of knowledge. We provide an example and a model, with specific steps of how teacher educators can effectively demonstrate connections between concrete objects and abstract math concepts.
Resumo:
This paper provides new sufficient conditions for the existence, computation via successive approximations, and stability of Markovian equilibrium decision processes for a large class of OLG models with stochastic nonclassical production. Our notion of stability is existence of stationary Markovian equilibrium. With a nonclassical production, our economies encompass a large class of OLG models with public policy, valued fiat money, production externalities, and Markov shocks to production. Our approach combines aspects of both topological and order theoretic fixed point theory, and provides the basis of globally stable numerical iteration procedures for computing extremal Markovian equilibrium objects. In addition to new theoretical results on existence and computation, we provide some monotone comparative statics results on the space of economies.
Resumo:
Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^
Resumo:
We introduce two probabilistic, data-driven models that predict a ship's speed and the situations where a ship is probable to get stuck in ice based on the joint effect of ice features such as the thickness and concentration of level ice, ice ridges, rafted ice, moreover ice compression is considered. To develop the models to datasets were utilized. First, the data from the Automatic Identification System about the performance of a selected ship was used. Second, a numerical ice model HELMI, developed in the Finnish Meteorological Institute, provided information about the ice field. The relations between the ice conditions and ship movements were established using Bayesian learning algorithms. The case study presented in this paper considers a single and unassisted trip of an ice-strengthened bulk carrier between two Finnish ports in the presence of challenging ice conditions, which varied in time and space. The obtained results show good prediction power of the models. This means, on average 80% for predicting the ship's speed within specified bins, and above 90% for predicting cases where a ship may get stuck in ice. We expect this new approach to facilitate the safe and effective route selection problem for ice-covered waters where the ship performance is reflected in the objective function.
Resumo:
In the last decade, a large number of software repositories have been created for different purposes. In this paper we present a survey of the publicly available repositories and classify the most common ones as well as discussing the problems faced by researchers when applying machine learning or statistical techniques to them.
Resumo:
Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.
Resumo:
The aim of this paper is to contribute to the understanding of the underlying factors in the process of transferring technology from university to industry. Findings point to strategic importance of critical factors as the definition of common objectives, cooperation, motivation, and the elimination of technical and legal barriers. These challenges must have implications in the incorporation of cooperative aspects of research projects in the design of public innovation policies.
Resumo:
Abstract This work is focused on the problem of performing multi‐robot patrolling for infrastructure security applications in order to protect a known environment at critical facilities. Thus, given a set of robots and a set of points of interest, the patrolling task consists of constantly visiting these points at irregular time intervals for security purposes. Current existing solutions for these types of applications are predictable and inflexible. Moreover, most of the previous centralized and deterministic solutions and only few efforts have been made to integrate dynamic methods. Therefore, the development of new dynamic and decentralized collaborative approaches in order to solve the aforementioned problem by implementing learning models from Game Theory. The model selected in this work that includes belief‐based and reinforcement models as special cases is called Experience‐Weighted Attraction. The problem has been defined using concepts of Graph Theory to represent the environment in order to work with such Game Theory techniques. Finally, the proposed methods have been evaluated experimentally by using a patrolling simulator. The results obtained have been compared with previous available