953 resultados para LAMELLAR CRYSTALS
Resumo:
We investigate the topological properties of N(N >= 1) disclination lines in cholesteric liquid crystals. The topological structure of N disclination lines is obtained with the Hopf index and Brouwer degree. Furthermore, the knotted x disclination loops is proposed with the Hopf invariant. And we consider the stability of such configuration based on the higher order interaction. At last, the evolution of the disclinations is discussed.
Resumo:
The molar heat capacities of the two biphenyl liquid crystals, 3BmFF and 3BmFFXF3, with a purity of 99.7 mol% have been precisely measured by a fully automated precision adiabatic calorimeter in the temperature range between T = 80 and 350 K. Nematic phase-liquid phase transitions were found between T = 297 K and 300 K with a peak temperature of T-peak = (298.071 +/- 0.089) K for 3BmFF, and between T = 316 and 319 K with a peak temperature of T-peak = (315.543 +/- 0.043) K for 3BmFFXF3. The molar enthalpy (Delta(trs)H(m)) and entropy (Delta(trs)S(m)) corresponding to these phase transitions have been determined by means of the analysis of the heat capacity curves, which are (15.261 +/- 0.023) U mol(-1) and (51.202 +/- 0.076) J K-1 mol(-1) for 3BmFF, (31.624 +/- 0.066) kJ mol(-1) and (100.249 +/- 0.212) J K-1 mol(-1) for 3BmFFXF3, respectively. The real melting points (TI) and the ideal melting points (TO) with no impurities of the two compounds have been obtained from the fractional melting method to be (298.056 +/- 0.018) K and (298.165 +/- 0.038) K for 3BmFF, (315.585 +/- 0.043) K and (315.661 +/- 0.044) K for 3BmFFXF3, respectively. In addition, the transitions of these two biphenyl liquid crystals from nematic phase to liquid phase have further been investigated by differential scanning calorimeter (DSC) technique; the repeatability and reliability for these phase transitions were verified. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Two organically templated trivalent metal-containing crystalline zirconium phosphate materials FeZrPO-8 and AlZrPO-8 have been prepared hydrothermally by using fluoride as a mineralizer, and 1,6-diaminohexane (DAH) as templates. The powder XRD patterns indicate that the as-synthesized products are new materials. Substitutions of Al3+ or Fe3+ into Zr4+ sites were confirmed by a combination of powder X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) studies. The thermal behavior of the title compounds have been investigated using TG-DTA and X-ray thermodiffractometry, which indicated that the inorganic framework of the compounds are thermally stable up to similar to400 degreesC. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The novel phase field model with the "polymer characteristic" was established based on a nonconserved spatiotemporal Ginzburg-Landau equation (TDGL model A). Especially, we relate the diffusion equation with the crystal growth faces of polymer single crystals. Namely, the diffusion equations are discretized according to the diffusion coefficient of every lattice site in various crystal growth faces and the shape of lattice is selected based on the real proportion of the unit cell dimensions.
Resumo:
By incorporating self-consistent field theory with lattice Boltzmann method, a model for polymer melts is proposed. Compared with models based on Ginzburg-Landau free energy, our model does not employ phenomenological free energies to describe systems and can consider the chain topological details of polymers. We use this model to study the effects of hydrodynamic interactions on the dynamics of microphase separation for block copolymers. In the early stage of phase separation, an exponential growth predicted by Cahn-Hilliard treatment is found. Simulation results also show that the effect of hydrodynamic interactions can be neglected in the early stage.
Resumo:
An interesting shape evolution of. PbS crystals, that is, from cubes to (truncated) octahedra and finally to stable star-shaped multipods with six arms along the < 100 > directions is first realized via a facile polyol-mediated reaction between lead acetate and sulfur powder in the absence of surfactants. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and Fourier transform infrared (FT-IR) techniques were employed to characterize the samples. We elucidate the important parameters (including reaction temperature and sulfur sources) responsible for the shape-controlled synthesis of PbS crystals.
Resumo:
The morphology of a H-shaped block copolymer (poly(ethylene glycol) backbone and polystyrene branches (PS)(2)PEG(PS)(2)) in a thin film has been investigated. A peculiar square lamella that has a phase-separated microdomain at its surface is obtained after spin coating. The experimental temperature plays a critical role in the lamellar formation. The copolymer first self-assembles into square lamellar micelles with an incomplete crystalline core due to the crystallizability of PEG.
Resumo:
Oriented crystallization of CUSO4 center dot 5H(2)O on a Langmuir-Blodgett (LB) film of stearic acid has been studied in the temperature ranges of 73-68 degrees C and 53-20 degrees C, respectively. This is the first time that the LB film at temperature above its melting point has been served as a template to induce nucleation and growth of crystals. The experimental results demonstrated that the LB film in the liquid state has the ability of directing the nucleation and growth of crystals. Moreover, X-ray diffraction patterns of the as prepared crystals revealed that the orientation of the attached crystals on the LB film is affected by temperature greatly.
Resumo:
Langmuir-Blodgett (LB) film of stearic acid was used as template to induce the nucleation and growth of KCl crystals when the KCl solution was cooled from 50 to 25 degrees C. When the LB film template was vertically dipped into the solution, only induced crystals with (1 1 0) orientation were formed. However, if the template was horizontally placed into solutions, both the induced nuclei at the solution/film interface and spontaneous nuclei formed in solution were simultaneously absorbed onto the LB film, and then grew further to form crystals. X-ray diffraction (XRD) patterns and optical microscopy images showed that the orientation and morphology of the crystals were controlled properly by changing the orientation and position of the LB films in the solutions.
Resumo:
A facile, efficient way to fabricate macroscopic soft colloidal crystals with fiber symmetry by drying a latex dispersion in a tube is presented. A transparent, stable colloidal crystal was obtained from a 25 wt % latex dispersion by complete water evaporation for 4 days. The centimeter-long sample was investigated by means of synchrotron small-angle X-ray diffraction (SAXD). Analysis of a large number of distinct Bragg peaks reveals that uniaxially oriented colloidal crystals with face-centered cubic lattice structure were formed.