970 resultados para L-functions
Resumo:
Electropolymerized film of 3,3′,3″,3‴-tetraaminophthalocyanatonickel(II) (p-NiIITAPc) on glassy carbon (GC) electrode was used for the selective and stable determination of 3,4-dihydroxy-l-phenylalanine (l-dopa) in acetate buffer (pH 4.0) solution. Bare GC electrode fails to determine the concentration of l-dopa accurately in acetate buffer solution due to the cyclization reaction of dopaquinone to cyclodopa in solution. On the other hand, p-NiIITAPc electrode successfully determines the concentration of l-dopa accurately because the cyclization reaction was prevented at this electrode. It was found that the electrochemical reaction of l-dopa at the modified electrode is faster than that at the bare GC electrode. This was confirmed from the higher heterogeneous electron transfer rate constant (k0) of l-dopa at p-NiIITAPc electrode (3.35 × 10−2 cm s−1) when compared to that at the bare GC electrode (5.18 × 10−3 cm s−1). Further, it was found that p-NiIITAPc electrode separates the signals of ascorbic acid (AA) and l-dopa in a mixture with a peak separation of 220 mV. Lowest detection limit of 100 nM was achieved at the modified electrode using amperometric method. Common physiological interferents like uric acid, glucose and urea does not show any interference within the potential window of l-dopa oxidation. The present electrode system was also successfully applied to estimate the concentration of l-dopa in the commercially available tablets.
Resumo:
This chapter reviews spontaneous volunteering in Australia and its challenges for volunteers and volunteer organisations. Drawing on their own empirical research mzd the wider literature, the authors suggest that better understanding of the nature and functions of spontaneous volunteering is needed to support community resilience and individual wellbeing.
Resumo:
Buildings structures and surfaces are explicitly being used to grow plants, and these “urban plantings” are generally designed for aesthetic value. Urban plantings also have the potential to contribute significant “ecological values” by increasing urban habitat for animals such as arthropods and by increasing plant productivity. In this study, we evaluated how the provision of these additional ecological values is affected by plant species richness; the availability of essential resources for plants, such as water, light, space; and soil characteristics. We sampled 33 plantings located on the exterior of three buildings in the urban center of Brisbane, Australia (subtropical climatic region) over 2, 6 week sampling periods characterized by different temperature and rainfall conditions. Plant cover was estimated as a surrogate for productivity as destructive sampling of biomass was not possible. We measured weekly light levels (photosynthetically active radiation), plant CO2 assimilation, soil CO2 efflux, and arthropod diversity. Differences in plant cover were best explained by a three-way interaction of plant species richness, management water regime and sampling period. As the richness of plant species increased in a planter, productivity and total arthropod richness also increased significantly—likely due to greater habitat heterogeneity and quality. Overall we found urban plantings can provide additional ecological values if essential resources are maintained within a planter such as water, light and soil temperature. Diverse urban plantings that are managed with these principles in mind can contribute to the attraction of diverse arthropod communities, and lead to increased plant productivity within a dense urban context.
Resumo:
Purpose – This paper aims to recognise the importance of informal processes within corporate governance and complement existing research in this area by investigating factors associated with the existence of informal interactions between audit committees and internal audit functions and in providing directions for future research. Design/methodology/approach – To examine the existence and drivers of informal interactions between audit committees and internal audit functions, this paper relies on a questionnaire survey of chief audit executives (CAEs) in the UK from listed and non-listed, as well as financial and non-financial, companies. While prior qualitative research suggests that informal interactions do take place, most of the evidence is based on particular organisational setting or on a very small range of interviews. The use of a questionnaire enabled the examination of the existence of internal interactions across a relatively larger number of entities. Findings – The paper finds evidence of audit committees and internal audit functions engaging in informal interactions in addition to formal pre-scheduled regular meetings. Informal interactions complement formal meetings with the audit committee and as such represent additional opportunities for the audit committees to monitor internal audit functions. Audit committees’ informal interactions are significantly and positively associated with audit committee independence, audit chair’s knowledge and experience, and internal audit quality. Originality/value – The results demonstrate the importance of the background of the audit committee chair for the effectiveness of the governance process. This is possibly the first paper to examine the relationship between audit committee quality and internal audit, on the existence and driver of informal interactions. Policy makers should recognize that in addition to formal mechanisms, informal processes, such as communication outside of formal pre-scheduled meetings, play a significant role in corporate governance.
Resumo:
The intermediate leaf-nosed bat (Hipposideros larvatus) is a medium-sized bat distributed throughout the Indo-Malay region. In north-east India, bats identified as H. larvatus captured at a single cave emitted echolocation calls with a bimodal distribution of peak frequencies, around either 85 kHz or 98 kHz. Individuals echolocating at 85 kHz had larger ears and longer forearms than those echolocating at 98 kHz, although no differences were detected in either wing morphology or diet, suggesting limited resource partitioning. A comparison of mitochondrial control region haplotypes of the two phonic types with individuals sampled from across the Indo-Malay range supports the hypothesis that, in India, two cryptic species are present. The Indian 98-kHz phonic bats formed a monophyletic clade with bats from all other regional populations sampled, to the exclusion of the Indian 85-kHz bats. In India, the two forms showed 12–13% sequence divergence and we propose that the name Hipposideros khasiana for bats of the 85-kHz phonic type. Bats of the 98-kHz phonic type formed a monophyletic group with bats from Myanmar, and corresponded to Hipposideros grandis, which is suggested to be a species distinct from Hipposideros larvatus. Differences in echolocation call frequency among populations did not reflect phylogenetic relationships, indicating that call frequency is a poor indicator of evolutionary history. Instead, divergence in call frequency probably occurs in allopatry, possibly augmented by character displacement on secondary contact to facilitate intraspecific communication.
Resumo:
Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block cipher is ideal. We address the problem of building indifferentiable compression functions from the PGV compression functions. We consider a general form of 64 PGV compression functions and replace the linear feed-forward operation in this generic PGV compression function with an ideal block cipher independent of the one used in the generic PGV construction. This modified construction is called a generic modified PGV (MPGV). We analyse indifferentiability of the generic MPGV construction in the ideal cipher model and show that 12 out of 64 MPGV compression functions in this framework are indifferentiable from a FIL-RO. To our knowledge, this is the first result showing that two independent block ciphers are sufficient to design indifferentiable single-block-length compression functions.
Resumo:
A compelling body of studies identifies the importance of sleep for children’s learning, behavioral regulation, and health. These studies have primarily focused on nighttime sleep or on total sleep duration. The independent contribution of daytime sleep, or napping, in childhood is an emerging research focus. Daytime sleep is particularly pertinent to the context of early childhood education and care (ECEC) where, internationally, allocation of time for naps is commonplace through to the time of school entry. The biological value of napping varies with neurological maturity and with individual circumstance. Beyond the age of 3 years, when monophasic sleep patterns become typical, there is an increasing disjuncture between children’s normative sleep requirements and ECEC practice. At this time, research evidence consistently identifies an association between napping and decreased quality and duration of night sleep. We assess the implications of this evidence for educational practice and health policy. We identify the need to distinguish the functions of napping from those of rest, and assert the need for evidence-based guidelines on sleep–rest practices in ECEC settings to accommodate individual variation in sleep needs. Given both the evidence on the impact of children’s nighttime sleep on long-term trajectories of health and well-being and the high rates of child attendance in ECEC programs, we conclude that policy and practice regarding naptime have significant implications for child welfare and ongoing public health.
Resumo:
Structural damage detection using measured dynamic data for pattern recognition is a promising approach. These pattern recognition techniques utilize artificial neural networks and genetic algorithm to match pattern features. In this study, an artificial neural network–based damage detection method using frequency response functions is presented, which can effectively detect nonlinear damages for a given level of excitation. The main objective of this article is to present a feasible method for structural vibration–based health monitoring, which reduces the dimension of the initial frequency response function data and transforms it into new damage indices and employs artificial neural network method for detecting different levels of nonlinearity using recognized damage patterns from the proposed algorithm. Experimental data of the three-story bookshelf structure at Los Alamos National Laboratory are used to validate the proposed method. Results showed that the levels of nonlinear damages can be identified precisely by the developed artificial neural networks. Moreover, it is identified that artificial neural networks trained with summation frequency response functions give higher precise damage detection results compared to the accuracy of artificial neural networks trained with individual frequency response functions. The proposed method is therefore a promising tool for structural assessment in a real structure because it shows reliable results with experimental data for nonlinear damage detection which renders the frequency response function–based method convenient for structural health monitoring.
Resumo:
Cryptographic hash functions are an important tool of cryptography and play a fundamental role in efficient and secure information processing. A hash function processes an arbitrary finite length input message to a fixed length output referred to as the hash value. As a security requirement, a hash value should not serve as an image for two distinct input messages and it should be difficult to find the input message from a given hash value. Secure hash functions serve data integrity, non-repudiation and authenticity of the source in conjunction with the digital signature schemes. Keyed hash functions, also called message authentication codes (MACs) serve data integrity and data origin authentication in the secret key setting. The building blocks of hash functions can be designed using block ciphers, modular arithmetic or from scratch. The design principles of the popular Merkle–Damgård construction are followed in almost all widely used standard hash functions such as MD5 and SHA-1.
Resumo:
We analyse the security of iterated hash functions that compute an input dependent checksum which is processed as part of the hash computation. We show that a large class of such schemes, including those using non-linear or even one-way checksum functions, is not secure against the second preimage attack of Kelsey and Schneier, the herding attack of Kelsey and Kohno and the multicollision attack of Joux. Our attacks also apply to a large class of cascaded hash functions. Our second preimage attacks on the cascaded hash functions improve the results of Joux presented at Crypto’04. We also apply our attacks to the MD2 and GOST hash functions. Our second preimage attacks on the MD2 and GOST hash functions improve the previous best known short-cut second preimage attacks on these hash functions by factors of at least 226 and 254, respectively. Our herding and multicollision attacks on the hash functions based on generic checksum functions (e.g., one-way) are a special case of the attacks on the cascaded iterated hash functions previously analysed by Dunkelman and Preneel and are not better than their attacks. On hash functions with easily invertible checksums, our multicollision and herding attacks (if the hash value is short as in MD2) are more efficient than those of Dunkelman and Preneel.
Resumo:
In this paper we present concrete collision and preimage attacks on a large class of compression function constructions making two calls to the underlying ideal primitives. The complexity of the collision attack is above the theoretical lower bound for constructions of this type, but below the birthday complexity; the complexity of the preimage attack, however, is equal to the theoretical lower bound. We also present undesirable properties of some of Stam’s compression functions proposed at CRYPTO ’08. We show that when one of the n-bit to n-bit components of the proposed 2n-bit to n-bit compression function is replaced by a fixed-key cipher in the Davies-Meyer mode, the complexity of finding a preimage would be 2 n/3. We also show that the complexity of finding a collision in a variant of the 3n-bits to 2n-bits scheme with its output truncated to 3n/2 bits is 2 n/2. The complexity of our preimage attack on this hash function is about 2 n . Finally, we present a collision attack on a variant of the proposed m + s-bit to s-bit scheme, truncated to s − 1 bits, with a complexity of O(1). However, none of our results compromise Stam’s security claims.
Resumo:
Halevi and Krawczyk proposed a message randomization algorithm called RMX as a front-end tool to the hash-then-sign digital signature schemes such as DSS and RSA in order to free their reliance on the collision resistance property of the hash functions. They have shown that to forge a RMX-hash-then-sign signature scheme, one has to solve a cryptanalytical task which is related to finding second preimages for the hash function. In this article, we will show how to use Dean’s method of finding expandable messages for finding a second preimage in the Merkle-Damgård hash function to existentially forge a signature scheme based on a t-bit RMX-hash function which uses the Davies-Meyer compression functions (e.g., MD4, MD5, SHA family) in 2 t/2 chosen messages plus 2 t/2 + 1 off-line operations of the compression function and similar amount of memory. This forgery attack also works on the signature schemes that use Davies-Meyer schemes and a variant of RMX published by NIST in its Draft Special Publication (SP) 800-106. We discuss some important applications of our attack.
Resumo:
In the modern era of information and communication technology, cryptographic hash functions play an important role in ensuring the authenticity, integrity, and nonrepudiation goals of information security as well as efficient information processing. This entry provides an overview of the role of hash functions in information security, popular hash function designs, some important analytical results, and recent advances in this field.
Resumo:
We study the rates of growth of the regret in online convex optimization. First, we show that a simple extension of the algorithm of Hazan et al eliminates the need for a priori knowledge of the lower bound on the second derivatives of the observed functions. We then provide an algorithm, Adaptive Online Gradient Descent, which interpolates between the results of Zinkevich for linear functions and of Hazan et al for strongly convex functions, achieving intermediate rates between [square root T] and [log T]. Furthermore, we show strong optimality of the algorithm. Finally, we provide an extension of our results to general norms.
Resumo:
We consider online prediction problems where the loss between the prediction and the outcome is measured by the squared Euclidean distance and its generalization, the squared Mahalanobis distance. We derive the minimax solutions for the case where the prediction and action spaces are the simplex (this setup is sometimes called the Brier game) and the \ell_2 ball (this setup is related to Gaussian density estimation). We show that in both cases the value of each sub-game is a quadratic function of a simple statistic of the state, with coefficients that can be efficiently computed using an explicit recurrence relation. The resulting deterministic minimax strategy and randomized maximin strategy are linear functions of the statistic.