863 resultados para Knowledge Acquisition and Sharing
Resumo:
During the selection, implementation and stabilization phases, as well as the operations and optimization phase of an ERP system (ERP-lifecycle), numerous companies consider to utilize the support of an external service provider. This paper analyses how different categories of knowledge influence the sourcing decision of crucial tasks within the ERP lifecycle. Based on a review of the IS outsourcing literature, essential knowledge-related determinants for the IS outsourcing decision are presented and aggregated in a structural model. It will be hypothesized that internal deficits in technological knowledge in comparison to external vendors as well as the specificity of the synthesis of special technological and specific business knowledge have a profound impact on the outsourcing decision. Then, a classification framework will be developed which facilitates the assignment of various tasks within the ERP lifecycle to their respective knowledge categories and knowledge carriers which might be internal or external stakeholders. The configuaration task will be used as an example to illustrate how the structural model and the classification framework may be applied to evaluate the outsourcing of tasks within the ERP lifecycle.
Resumo:
Interdisciplinary citation patterns and other indicators of the flow and sharing of academic knowledge suggest that economists and anthropologists do not talk to each other. Previous studies of this puzzling trend have typically attributed the problem to methodological differences between the two disciplines. Although there are significant differences between economics and anthropology in behavioral assumptions and modes of inquiry, similar differences exist between them and other disciplines (some with much heavier volumes of cross-citations with economics or anthropology), suggesting that the source of the problem lies elsewhere. This paper considers the problem at a deeper level by examining systematic differences in the preferences, capabilities, and literary cultures of economists and anthropologists. Adopting a rhetorical perspective, I consider not the firms, households, or tribes as the principal objective of analysis in the two disciplines, but the conversations between these units. These conversations (through non-verbal as well as verbal media) can be grouped into two genres, based on the type of problem they aim to solve. Those in the first genre aim to solve the problem of interest--how to align the incentives of the parties involved. Those in the second genre deal with the problem of knowledge--how to align localized, and dispersed information. Economists are interested and capable of dealing with primarily, if not exclusively, the first genre, and anthropologists focus on the second. This difference has far reaching consequences for how economists and anthropologists conduct their own scholarly conversations with their own colleagues, why they are having difficulty talking to each other across disciplinary boundaries, and what can be done to change the patterns of communication.
Resumo:
Influenza and pneumonia together comprise the seventh leading cause of death among adults in the U.S and were responsible for 65,163 deaths in 2003 and an average of 36,000 deaths per year in the United States from 1990 to 1999. Vaccination is efficacious and cost-effective in terms of preventing the infection and reducing both health care costs and productivity losses associated with influenza illness. The vaccine shortage of 2004–2005 resulted in a 39% decrease in the influenza vaccine supplies. During the fall of 2004, we conducted a nationwide, random-digit dialing, telephonic-interview survey of 1,202 adults aged 18 years and older to ascertain influenza vaccine knowledge, attitude and behavior. Of the 1,202 total interviewed subjects, 44.7% had received or intended to receive vaccine at the time of the survey (2004–05) and 39.6% had received the influenza vaccine the previous year (2003–04). Receipt of vaccine increased with previous receipt of the influenza vaccine (OR 13.17, 95% CI 8.65–20.08), increased motivation status (OR 7.58, 95% CI 4.03–14.25), subjective risk status (OR 3.33, 95% CI 2.23–4.97), age (OR 1.83, 95% CI 1.22–2.75) and previous receipt of the pneumococcal vaccine (OR 1.75, 95% CI 1.02–3.0). The influenza vaccine shortage of 2004–05 did not have a negative impact on the vaccination rates of study population. In addition to the increased rates, a large majority of respondents were also aware of the shortage of influenza vaccine during the 2004–05 season, about the indications for receiving the influenza vaccine, about alternative methods to prevent contracting the influenza and increased motivation to receive the vaccine. ^
Resumo:
Despite the recent decline in adolescent pregnancy rates, adolescent pregnancy continues to be a significant public health issue in the United States. The United States consistently reports the highest rate of adolescent pregnancy among developed countries. Adolescent mothers are more likely to have multiple pregnancies, to access welfare and other social services, and to be unmarried. Teen mothers are less likely to complete high school, enter college, and typically command much less earning power throughout their lifetime as compared to women who delay childbirth until later. Moreover, the United States spends approximately $9.1 billion annually on teen pregnancies. ^ Additionally disconcerting is recent data which demonstrates that the decline in teen pregnancy rates is leveling off and that the rate of adolescent pregnancy has increased for the first time since 1993. Contraceptive use is a key component to the prevention of adolescent pregnancy. Contraceptive nonuse and failure result in unintended pregnancies among adolescents. This review sought to assess the levels of knowledge and attitudes toward contraception among adolescent females.^ Levels of knowledge of contraception among adolescents are tolerable; however, there is substantial room for improvement. Misperceptions about the side effects and mechanisms of action of contraception are pervasive among this population. Adolescents who have low levels of knowledge regarding contraception tend to discontinue usage or use inconsistently. Attitudes toward contraception are greatly influenced by levels of knowledge. As a result, adolescents tend to develop more positive attitudes as misperceptions are abated. Moreover, clear disparities persist among adolescents with minority and young adolescents being at increased risk of pregnancy, poor contraceptive use, and insufficient knowledge about contraception.^ Understanding the level of knowledge of and attitudes toward contraceptives among adolescents is essential to the development of effective pregnancy prevention programs. In order to effectively reduce adolescent pregnancy, prevention initiatives must target the vulnerable populations and incorporate the necessary cultural components.^
Resumo:
Scholars agree that governance of the public environment entails cooperation between science, policy and society. This requires the active role of public managers as catalysts of knowledge co-production, addressing participatory arenas in relation to knowledge integration and social learning. This paper deals with the question of whether public managers acknowledge and take on this task. A survey accessing Directors of Environmental Offices (EOs) of 64 municipalities was carried out in parallel for two regions - Tuscany (Italy) and Porto Alegre Metropolitan Region (Brazil). The survey data were analysed using the multiple correspondence method. Results showed that, regarding policy practices, EOs do not play the role of knowledge co-production catalysts, since when making environmental decisions they only use technical knowledge. We conclude that there is a gap between theory and practice, and identify some factors that may hinder local environmental managers in acting as catalyst of knowledge co-production, raising a further question for future research.
Resumo:
This paper estimates the impact of industrial agglomeration on firm-level productivity in Chinese manufacturing sectors. To account for spatial autocorrelation across regions, we formulate a hierarchical spatial model at the firm level and develop a Bayesian estimation algorithm. A Bayesian instrumental-variables approach is used to address endogeneity bias of agglomeration. Robust to these potential biases, we find that agglomeration of the same industry (i.e. localization) has a productivity-boosting effect, but agglomeration of urban population (i.e. urbanization) has no such effects. Additionally, the localization effects increase with educational levels of employees and the share of intermediate inputs in gross output. These results may suggest that agglomeration externalities occur through knowledge spillovers and input sharing among firms producing similar manufactures.
Resumo:
This paper compares three knowledge carriers—trade, foreign direct investment (FDI), and inventors—as knowledge mediums, and investigates their effects on knowledge flow in East Asia from 1996 to 2010. Using patent citations as a proxy for knowledge flow, this paper shows that FDI and inventor mobility have positive effects on increasing patent citations in East Asia when the technological portfolios of two countries are less similar. While trade shows statistical significance, the effect is inconsistent according to the regression models.
Resumo:
Current “Internet of Things” concepts point to a future where connected objects gather meaningful information about their environment and share it with other objects and people. In particular, objects embedding Human Machine Interaction (HMI), such as mobile devices and, increasingly, connected vehicles, home appliances, urban interactive infrastructures, etc., may not only be conceived as sources of sensor information, but, through interaction with their users, they can also produce highly valuable context-aware human-generated observations. We believe that the great promise offered by combining and sharing all of the different sources of information available can be realized through the integration of HMI and Semantic Sensor Web technologies. This paper presents a technological framework that harmonizes two of the most influential HMI and Sensor Web initiatives: the W3C’s Multimodal Architecture and Interfaces (MMI) and the Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) with its semantic extension, respectively. Although the proposed framework is general enough to be applied in a variety of connected objects integrating HMI, a particular development is presented for a connected car scenario where drivers’ observations about the traffic or their environment are shared across the Semantic Sensor Web. For implementation and evaluation purposes an on-board OSGi (Open Services Gateway Initiative) architecture was built, integrating several available HMI, Sensor Web and Semantic Web technologies. A technical performance test and a conceptual validation of the scenario with potential users are reported, with results suggesting the approach is sound
Resumo:
This paper shows the development of a science-technological knowledge transfer model in Mexico, as a means to boost the limited relations between the scientific and industrial environments. The proposal is based on the analysis of eight organizations (research centers and firms) with varying degrees of skill in the practice of science-technological knowledge transfer, and carried out by the case study approach. The analysis highlights the synergistic use of the organizational and technological capabilities of each organization, as a means to identification of the knowledge transfer mechanisms best suited to enabling the establishment of cooperative processes, and achieve the R&D and innovation activities results.
Resumo:
In this paper, abstract interpretation algorithms are described for computing the sharmg as well as the freeness information about the run-time instantiations of program variables. An abstract domain is proposed which accurately and concisely represents combined freeness and sharing information for program variables. Abstract unification and all other domain-specific functions for an abstract interpreter working on this domain are presented. These functions are illustrated with an example. The importance of inferring freeness is stressed by showing (1) the central role it plays in non-strict goal independence, and (2) the improved accuracy it brings to the analysis of sharing information when both are computed together. Conversely, it is shown that keeping accurate track of sharing allows more precise inference of freeness, thus resulting in an overall much more powerful abstract interpreter.
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
This paper presents improved unification algorithms, an implementation, and an analysis of the effectiveness of an abstract interpreter based on the sharing + freeness domain presented in a previous paper, which was designed to accurately and concisely represent combined freeness and sharing information for program variables. We first briefly review this domain and the unification algorithms previously proposed. We then improve these algorithms and correct them to deal with some cases which were not well analyzed previously, illustrating the improvement with an example. We then present the implementation of the improved algorithm and evaluate its performance by comparing the effectiveness of the information inferred to that of other interpreters available to us for an application (program parallelization) that is common to all these interpreters. All these systems have been embedded in a real parallelizing compiler. Effectiveness of the analysis is measured in terms of actual final performance of the system: i.e. in terms of the actual speedups obtained. The results show good performance for the combined domain in that it improves the accuracy of both types of information and also in that the analyzer using the combined domain is more effective in the application than any of the other analyzers it is compared to.
Resumo:
The recognition of the relevance of energy, especially of the renewable energies generated by the sun, water, wind, tides, modern biomass or thermal is growing significantly in the global society based on the possibility it has to improve societies′ quality of life, to support poverty reduction and sustainable development. Renewable energy, and mainly the energy generated by large hydropower generation projects that supply most of the renewable energy consumed by developing countries, requires many technical, legal, financial and social complex processes sustained by innovations and valuable knowledge. Besides these efforts, renewable energy requires a solid infrastructure to generate and distribute the energy resources needed to solve the basic needs of society. This demands a proper construction performance to deliver the energy projects planned according to specifications and respecting environmental and social concerns, which implies the observance of sustainable construction guidelines. But construction projects are complex and demanding and frequently face time and cost overruns that may cause negative impacts on the initial planning and thus on society. The renewable energy issue and the large renewable energy power generation and distribution projects are particularly significant for developing countries and for Latin America in particular, as this region concentrates an important hydropower potential and installed capacity. Using as references the performance of Venezuelan large hydropower generation projects and the Guri dam construction, this research evaluates the tight relationship existing between sustainable construction and knowledge management and their impact to achieve sustainability goals. The knowledge management processes are proposed as a basic strategy to allow learning from successes and failures obtained in previous projects and transform the enhancement opportunites into actions to improve the performance of the renewable energy power generation and distribution projects.
Resumo:
The project arises from the need to develop improved teaching methodologies in field of the mechanics of continuous media. The objective is to offer the student a learning process to acquire the necessary theoretical knowledge, cognitive skills and the responsibility and autonomy to professional development in this area. Traditionally the teaching of the concepts of these subjects was performed through lectures and laboratory practice. During these lessons the students attitude was usually passive, and therefore their effectiveness was poor. The proposed methodology has already been successfully employed in universities like University Bochum, Germany, University the South Australia and aims to improve the effectiveness of knowledge acquisition through use by the student of a virtual laboratory. This laboratory allows to adapt the curricula and learning techniques to the European Higher Education and improve current learning processes in the University School of Public Works Engineers -EUITOP- of the Technical University of Madrid -UPM-, due there are not laboratories in this specialization. The virtual space is created using a software platform built on OpenSim, manages 3D virtual worlds, and, language LSL -Linden Scripting Language-, which imprints specific powers to objects. The student or user can access this virtual world through their avatar -your character in the virtual world- and can perform practices within the space created for the purpose, at any time, just with computer with internet access and viewfinder. The virtual laboratory has three partitions. The virtual meeting rooms, where the avatar can interact with peers, solve problems and exchange existing documentation in the virtual library. The interactive game room, where the avatar is has to resolve a number of issues in time. And the video room where students can watch instructional videos and receive group lessons. Each audiovisual interactive element is accompanied by explanations framing it within the area of knowledge and enables students to begin to acquire a vocabulary and practice of the profession for which they are being formed. Plane elasticity concepts are introduced from the tension and compression testing of test pieces of steel and concrete. The behavior of reticulated and articulated structures is reinforced by some interactive games and concepts of tension, compression, local and global buckling will by tests to break articulated structures. Pure bending concepts, simple and composite torsion will be studied by observing a flexible specimen. Earthquake resistant design of buildings will be checked by a laboratory test video.
Resumo:
Tradicionalmente, el uso de técnicas de análisis de datos ha sido una de las principales vías para el descubrimiento de conocimiento oculto en grandes cantidades de datos, recopilados por expertos en diferentes dominios. Por otra parte, las técnicas de visualización también se han usado para mejorar y facilitar este proceso. Sin embargo, existen limitaciones serias en la obtención de conocimiento, ya que suele ser un proceso lento, tedioso y en muchas ocasiones infructífero, debido a la dificultad de las personas para comprender conjuntos de datos de grandes dimensiones. Otro gran inconveniente, pocas veces tenido en cuenta por los expertos que analizan grandes conjuntos de datos, es la degradación involuntaria a la que someten a los datos durante las tareas de análisis, previas a la obtención final de conclusiones. Por degradación quiere decirse que los datos pueden perder sus propiedades originales, y suele producirse por una reducción inapropiada de los datos, alterando así su naturaleza original y llevando en muchos casos a interpretaciones y conclusiones erróneas que podrían tener serias implicaciones. Además, este hecho adquiere una importancia trascendental cuando los datos pertenecen al dominio médico o biológico, y la vida de diferentes personas depende de esta toma final de decisiones, en algunas ocasiones llevada a cabo de forma inapropiada. Ésta es la motivación de la presente tesis, la cual propone un nuevo framework visual, llamado MedVir, que combina la potencia de técnicas avanzadas de visualización y minería de datos para tratar de dar solución a estos grandes inconvenientes existentes en el proceso de descubrimiento de información válida. El objetivo principal es hacer más fácil, comprensible, intuitivo y rápido el proceso de adquisición de conocimiento al que se enfrentan los expertos cuando trabajan con grandes conjuntos de datos en diferentes dominios. Para ello, en primer lugar, se lleva a cabo una fuerte disminución en el tamaño de los datos con el objetivo de facilitar al experto su manejo, y a la vez preservando intactas, en la medida de lo posible, sus propiedades originales. Después, se hace uso de efectivas técnicas de visualización para representar los datos obtenidos, permitiendo al experto interactuar de forma sencilla e intuitiva con los datos, llevar a cabo diferentes tareas de análisis de datos y así estimular visualmente su capacidad de comprensión. De este modo, el objetivo subyacente se basa en abstraer al experto, en la medida de lo posible, de la complejidad de sus datos originales para presentarle una versión más comprensible, que facilite y acelere la tarea final de descubrimiento de conocimiento. MedVir se ha aplicado satisfactoriamente, entre otros, al campo de la magnetoencefalografía (MEG), que consiste en la predicción en la rehabilitación de lesiones cerebrales traumáticas (Traumatic Brain Injury (TBI) rehabilitation prediction). Los resultados obtenidos demuestran la efectividad del framework a la hora de acelerar y facilitar el proceso de descubrimiento de conocimiento sobre conjuntos de datos reales. ABSTRACT Traditionally, the use of data analysis techniques has been one of the main ways of discovering knowledge hidden in large amounts of data, collected by experts in different domains. Moreover, visualization techniques have also been used to enhance and facilitate this process. However, there are serious limitations in the process of knowledge acquisition, as it is often a slow, tedious and many times fruitless process, due to the difficulty for human beings to understand large datasets. Another major drawback, rarely considered by experts that analyze large datasets, is the involuntary degradation to which they subject the data during analysis tasks, prior to obtaining the final conclusions. Degradation means that data can lose part of their original properties, and it is usually caused by improper data reduction, thereby altering their original nature and often leading to erroneous interpretations and conclusions that could have serious implications. Furthermore, this fact gains a trascendental importance when the data belong to medical or biological domain, and the lives of people depends on the final decision-making, which is sometimes conducted improperly. This is the motivation of this thesis, which proposes a new visual framework, called MedVir, which combines the power of advanced visualization techniques and data mining to try to solve these major problems existing in the process of discovery of valid information. Thus, the main objective is to facilitate and to make more understandable, intuitive and fast the process of knowledge acquisition that experts face when working with large datasets in different domains. To achieve this, first, a strong reduction in the size of the data is carried out in order to make the management of the data easier to the expert, while preserving intact, as far as possible, the original properties of the data. Then, effective visualization techniques are used to represent the obtained data, allowing the expert to interact easily and intuitively with the data, to carry out different data analysis tasks, and so visually stimulating their comprehension capacity. Therefore, the underlying objective is based on abstracting the expert, as far as possible, from the complexity of the original data to present him a more understandable version, thus facilitating and accelerating the task of knowledge discovery. MedVir has been succesfully applied to, among others, the field of magnetoencephalography (MEG), which consists in predicting the rehabilitation of Traumatic Brain Injury (TBI). The results obtained successfully demonstrate the effectiveness of the framework to accelerate and facilitate the process of knowledge discovery on real world datasets.